Solve for c (complex solution)
\left\{\begin{matrix}c=-\ln(m)^{-\frac{1}{2}}\sqrt{\ln(\epsilon )+2\pi n_{1}i}\text{, }n_{1}\in \mathrm{Z}\text{; }c=\ln(m)^{-\frac{1}{2}}\sqrt{\ln(\epsilon )+2\pi n_{1}i}\text{, }n_{1}\in \mathrm{Z}\text{, }&\epsilon \neq 0\text{ and }m\neq 1\text{ and }m\neq 0\\c\in \mathrm{C}\text{, }&\left(m=0\text{ and }\epsilon =0\right)\text{ or }\left(m=1\text{ and }\epsilon =1\right)\end{matrix}\right.
Solve for m (complex solution)
m=e^{\frac{arg(\epsilon )Im(c^{2})+iarg(\epsilon )Re(c^{2})}{\left(\left(Re(c)\right)^{2}+\left(Im(c)\right)^{2}\right)^{2}}-\frac{2\pi n_{1}iRe(c^{2})}{\left(\left(Re(c)\right)^{2}+\left(Im(c)\right)^{2}\right)^{2}}-\frac{2\pi n_{1}Im(c^{2})}{\left(\left(Re(c)\right)^{2}+\left(Im(c)\right)^{2}\right)^{2}}}\left(|\epsilon |\right)^{\frac{Re(c^{2})-iIm(c^{2})}{\left(\left(Re(c)\right)^{2}+\left(Im(c)\right)^{2}\right)^{2}}}
n_{1}\in \mathrm{Z}
Solve for c
\left\{\begin{matrix}c=\sqrt{\log_{m}\left(\epsilon \right)}\text{; }c=-\sqrt{\log_{m}\left(\epsilon \right)}\text{, }&\left(\epsilon \geq 1\text{ and }m>1\right)\text{ or }\left(\epsilon \leq 1\text{ and }\epsilon >0\text{ and }m>0\text{ and }m<1\right)\\c\in \mathrm{R}\text{, }&\left(\epsilon =-1\text{ and }Denominator(c^{2})\text{bmod}2=1\text{ and }Numerator(c^{2})\text{bmod}2=1\text{ and }m=-1\right)\text{ or }\left(\epsilon =1\text{ and }m=1\right)\\c\neq 0\text{, }&m=0\text{ and }\epsilon =0\end{matrix}\right.
Solve for m
\left\{\begin{matrix}m=\epsilon ^{\frac{1}{c^{2}}}\text{, }&\left(Denominator(\frac{1}{c^{2}})\text{bmod}2=1\text{ and }c\neq 0\text{ and }Numerator(c^{2})\text{bmod}2=1\text{ and }Denominator(c^{2})\text{bmod}2=1\text{ and }\epsilon ^{\frac{1}{c^{2}}}\neq 0\text{ and }\epsilon <0\right)\text{ or }\left(c\neq 0\text{ and }\epsilon \geq 0\right)\\m=-\epsilon ^{\frac{1}{c^{2}}}\text{, }&\left(\epsilon ^{\frac{1}{c^{2}}}<0\text{ and }c\neq 0\text{ and }\epsilon >0\text{ and }Numerator(c^{2})\text{bmod}2=0\right)\text{ or }\left(Numerator(c^{2})\text{bmod}2=0\text{ and }c\neq 0\text{ and }\epsilon =0\right)\text{ or }\left(c\neq 0\text{ and }\epsilon >0\text{ and }Numerator(c^{2})\text{bmod}2=0\text{ and }Denominator(c^{2})\text{bmod}2=1\right)\text{ or }\left(Denominator(\frac{1}{c^{2}})\text{bmod}2=1\text{ and }c\neq 0\text{ and }Numerator(c^{2})\text{bmod}2=0\text{ and }Numerator(c^{2})\text{bmod}2=1\text{ and }Denominator(c^{2})\text{bmod}2=1\text{ and }\epsilon ^{\frac{1}{c^{2}}}\neq 0\text{ and }\epsilon <0\right)\\m\neq 0\text{, }&c=0\text{ and }\epsilon =1\end{matrix}\right.
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}