Skip to main content
Solve for E
Tick mark Image
Solve for v
Tick mark Image

Similar Problems from Web Search

Share

\epsilon E=\pi \left(\sigma _{1}-v\left(\sigma _{2}+\sigma _{3}\right)\right)
Variable E cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by E.
\epsilon E=\pi \left(\sigma _{1}-\left(v\sigma _{2}+v\sigma _{3}\right)\right)
Use the distributive property to multiply v by \sigma _{2}+\sigma _{3}.
\epsilon E=\pi \left(\sigma _{1}-v\sigma _{2}-v\sigma _{3}\right)
To find the opposite of v\sigma _{2}+v\sigma _{3}, find the opposite of each term.
\epsilon E=\pi \sigma _{1}-\pi v\sigma _{2}-\pi v\sigma _{3}
Use the distributive property to multiply \pi by \sigma _{1}-v\sigma _{2}-v\sigma _{3}.
\epsilon E=\pi \sigma _{1}-\pi v\sigma _{3}-\pi v\sigma _{2}
The equation is in standard form.
\frac{\epsilon E}{\epsilon }=\frac{\pi \left(\sigma _{1}-v\sigma _{3}-v\sigma _{2}\right)}{\epsilon }
Divide both sides by \epsilon .
E=\frac{\pi \left(\sigma _{1}-v\sigma _{3}-v\sigma _{2}\right)}{\epsilon }
Dividing by \epsilon undoes the multiplication by \epsilon .
E=\frac{\pi \left(\sigma _{1}-v\sigma _{3}-v\sigma _{2}\right)}{\epsilon }\text{, }E\neq 0
Variable E cannot be equal to 0.
\epsilon E=\pi \left(\sigma _{1}-v\left(\sigma _{2}+\sigma _{3}\right)\right)
Multiply both sides of the equation by E.
\epsilon E=\pi \left(\sigma _{1}-\left(v\sigma _{2}+v\sigma _{3}\right)\right)
Use the distributive property to multiply v by \sigma _{2}+\sigma _{3}.
\epsilon E=\pi \left(\sigma _{1}-v\sigma _{2}-v\sigma _{3}\right)
To find the opposite of v\sigma _{2}+v\sigma _{3}, find the opposite of each term.
\epsilon E=\pi \sigma _{1}-\pi v\sigma _{2}-\pi v\sigma _{3}
Use the distributive property to multiply \pi by \sigma _{1}-v\sigma _{2}-v\sigma _{3}.
\pi \sigma _{1}-\pi v\sigma _{2}-\pi v\sigma _{3}=\epsilon E
Swap sides so that all variable terms are on the left hand side.
-\pi v\sigma _{2}-\pi v\sigma _{3}=\epsilon E-\pi \sigma _{1}
Subtract \pi \sigma _{1} from both sides.
-\pi v\sigma _{2}-\pi v\sigma _{3}=E\epsilon -\pi \sigma _{1}
Reorder the terms.
\left(-\pi \sigma _{2}-\pi \sigma _{3}\right)v=E\epsilon -\pi \sigma _{1}
Combine all terms containing v.
\frac{\left(-\pi \sigma _{2}-\pi \sigma _{3}\right)v}{-\pi \sigma _{2}-\pi \sigma _{3}}=\frac{E\epsilon -\pi \sigma _{1}}{-\pi \sigma _{2}-\pi \sigma _{3}}
Divide both sides by -\pi \sigma _{2}-\pi \sigma _{3}.
v=\frac{E\epsilon -\pi \sigma _{1}}{-\pi \sigma _{2}-\pi \sigma _{3}}
Dividing by -\pi \sigma _{2}-\pi \sigma _{3} undoes the multiplication by -\pi \sigma _{2}-\pi \sigma _{3}.
v=\frac{E\epsilon -\pi \sigma _{1}}{-\pi \left(\sigma _{2}+\sigma _{3}\right)}
Divide \epsilon E-\pi \sigma _{1} by -\pi \sigma _{2}-\pi \sigma _{3}.