Solve for a
\left\{\begin{matrix}a=\frac{\theta }{\cos(\frac{3}{5})r}\text{, }&r\neq 0\\a\in \mathrm{R}\text{, }&\theta =0\text{ and }r=0\end{matrix}\right.
Solve for r
\left\{\begin{matrix}r=\frac{\theta }{\cos(\frac{3}{5})a}\text{, }&a\neq 0\\r\in \mathrm{R}\text{, }&\theta =0\text{ and }a=0\end{matrix}\right.
Share
Copied to clipboard
ar\cos(\frac{3}{5})=\theta
Swap sides so that all variable terms are on the left hand side.
\cos(\frac{3}{5})ra=\theta
The equation is in standard form.
\frac{\cos(\frac{3}{5})ra}{\cos(\frac{3}{5})r}=\frac{\theta }{\cos(\frac{3}{5})r}
Divide both sides by r\cos(\frac{3}{5}).
a=\frac{\theta }{\cos(\frac{3}{5})r}
Dividing by r\cos(\frac{3}{5}) undoes the multiplication by r\cos(\frac{3}{5}).
ar\cos(\frac{3}{5})=\theta
Swap sides so that all variable terms are on the left hand side.
\cos(\frac{3}{5})ar=\theta
The equation is in standard form.
\frac{\cos(\frac{3}{5})ar}{\cos(\frac{3}{5})a}=\frac{\theta }{\cos(\frac{3}{5})a}
Divide both sides by a\cos(\frac{3}{5}).
r=\frac{\theta }{\cos(\frac{3}{5})a}
Dividing by a\cos(\frac{3}{5}) undoes the multiplication by a\cos(\frac{3}{5}).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}