Solve for a
a=-\theta +\frac{4\pi ^{2}}{3}
Solve for θ
\theta =-a+\frac{4\pi ^{2}}{3}
Graph
Share
Copied to clipboard
6\theta +6a=\pi \pi \times 8
Multiply both sides of the equation by 6.
6\theta +6a=\pi ^{2}\times 8
Multiply \pi and \pi to get \pi ^{2}.
6a=\pi ^{2}\times 8-6\theta
Subtract 6\theta from both sides.
6a=8\pi ^{2}-6\theta
The equation is in standard form.
\frac{6a}{6}=\frac{8\pi ^{2}-6\theta }{6}
Divide both sides by 6.
a=\frac{8\pi ^{2}-6\theta }{6}
Dividing by 6 undoes the multiplication by 6.
a=-\theta +\frac{4\pi ^{2}}{3}
Divide 8\pi ^{2}-6\theta by 6.
6\theta +6a=\pi \pi \times 8
Multiply both sides of the equation by 6.
6\theta +6a=\pi ^{2}\times 8
Multiply \pi and \pi to get \pi ^{2}.
6\theta =\pi ^{2}\times 8-6a
Subtract 6a from both sides.
6\theta =8\pi ^{2}-6a
The equation is in standard form.
\frac{6\theta }{6}=\frac{8\pi ^{2}-6a}{6}
Divide both sides by 6.
\theta =\frac{8\pi ^{2}-6a}{6}
Dividing by 6 undoes the multiplication by 6.
\theta =-a+\frac{4\pi ^{2}}{3}
Divide 8\pi ^{2}-6a by 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}