Solve for θ
\theta =\frac{\sin(\sqrt[6]{3x+7}x^{2})+44\cos(\sqrt[6]{3x+7}x^{2})}{x\cos(\sqrt[6]{3x+7}x^{2})}
x\neq 0\text{ and }x\geq -\frac{7}{3}\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }\sqrt[6]{3x+7}x^{2}=\pi n_{1}+\frac{\pi }{2}
Graph
Share
Copied to clipboard
\theta x=\tan(x^{2}\sqrt{\sqrt[3]{3x+7}})+44
Add 44 to both sides.
x\theta =\tan(\sqrt{\sqrt[3]{3x+7}}x^{2})+44
The equation is in standard form.
\frac{x\theta }{x}=\frac{\tan(\sqrt[6]{3x+7}x^{2})+44}{x}
Divide both sides by x.
\theta =\frac{\tan(\sqrt[6]{3x+7}x^{2})+44}{x}
Dividing by x undoes the multiplication by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}