\text { 3. } y = x [ p + \sqrt { ( } 1 + p ^ { 2 } ) ]
Solve for x
x=3y\left(\sqrt{p^{2}+1}-p\right)
Solve for p
\left\{\begin{matrix}p=\frac{9y^{2}-x^{2}}{6xy}\text{, }&\left(y<0\text{ and }x<0\right)\text{ or }\left(y>0\text{ and }x>0\right)\\p\in \mathrm{R}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
3y=xp+x\sqrt{1+p^{2}}
Use the distributive property to multiply x by p+\sqrt{1+p^{2}}.
xp+x\sqrt{1+p^{2}}=3y
Swap sides so that all variable terms are on the left hand side.
\left(p+\sqrt{1+p^{2}}\right)x=3y
Combine all terms containing x.
\left(\sqrt{p^{2}+1}+p\right)x=3y
The equation is in standard form.
\frac{\left(\sqrt{p^{2}+1}+p\right)x}{\sqrt{p^{2}+1}+p}=\frac{3y}{\sqrt{p^{2}+1}+p}
Divide both sides by p+\sqrt{1+p^{2}}.
x=\frac{3y}{\sqrt{p^{2}+1}+p}
Dividing by p+\sqrt{1+p^{2}} undoes the multiplication by p+\sqrt{1+p^{2}}.
x=3y\left(\sqrt{p^{2}+1}-p\right)
Divide 3y by p+\sqrt{1+p^{2}}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}