Solve for U
\left\{\begin{matrix}U=\frac{Y\left(t+2\pi \right)}{k_{p}t}\text{, }&t\neq 0\text{ and }k_{p}\neq 0\\U\in \mathrm{R}\text{, }&\left(Y=0\text{ and }k_{p}=0\right)\text{ or }\left(Y=0\text{ and }t=0\right)\text{ or }\left(t=-2\pi \text{ and }k_{p}=0\right)\end{matrix}\right.
Solve for Y
\left\{\begin{matrix}Y=\frac{Uk_{p}t}{t+2\pi }\text{, }&t\neq -2\pi \\Y\in \mathrm{R}\text{, }&\left(U=0\text{ or }k_{p}=0\right)\text{ and }t=-2\pi \end{matrix}\right.
Quiz
Linear Equation
5 problems similar to:
\tau \frac { d Y ( t ) } { d t } + Y ( t ) = k _ { p } U ( t )
Share
Copied to clipboard
2 * \pi \frac{d}{dt} {Y {(t)}} + Y {(t)} = k_{p} U {(t)}
Substitute 2 * \pi for \tau.
k_{p}Ut=2\pi \frac{\mathrm{d}}{\mathrm{d}t}(Yt)+Yt
Swap sides so that all variable terms are on the left hand side.
k_{p}tU=Yt+2\pi Y
The equation is in standard form.
\frac{k_{p}tU}{k_{p}t}=\frac{Y\left(t+2\pi \right)}{k_{p}t}
Divide both sides by k_{p}t.
U=\frac{Y\left(t+2\pi \right)}{k_{p}t}
Dividing by k_{p}t undoes the multiplication by k_{p}t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}