Solve for h
h=\frac{1524164339268317x}{3125000000000000}
x\neq 0
Solve for x
x=\frac{3125000000000000h}{1524164339268317}
h\neq 0
Graph
Share
Copied to clipboard
0.48773258856586144 = \frac{h}{x}
Evaluate trigonometric functions in the problem
0.48773258856586144x=h
Multiply both sides of the equation by x.
h=0.48773258856586144x
Swap sides so that all variable terms are on the left hand side.
0.48773258856586144 = \frac{h}{x}
Evaluate trigonometric functions in the problem
0.48773258856586144x=h
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\frac{0.48773258856586144x}{0.48773258856586144}=\frac{h}{0.48773258856586144}
Divide both sides of the equation by 0.48773258856586144, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{h}{0.48773258856586144}
Dividing by 0.48773258856586144 undoes the multiplication by 0.48773258856586144.
x=\frac{3125000000000000h}{1524164339268317}
Divide h by 0.48773258856586144 by multiplying h by the reciprocal of 0.48773258856586144.
x=\frac{3125000000000000h}{1524164339268317}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}