Solve for x
x=-\frac{2679491924311227y}{10000000000000000}+10.717967697244908
y\neq 40
Solve for y
y=-\frac{10000000000000000x}{2679491924311227}+40
x\neq 0
Graph
Share
Copied to clipboard
0.2679491924311227 = \frac{x}{40 - y}
Evaluate trigonometric functions in the problem
0.2679491924311227\left(-y+40\right)=x
Multiply both sides of the equation by -y+40.
-0.2679491924311227y+10.717967697244908=x
Use the distributive property to multiply 0.2679491924311227 by -y+40.
x=-0.2679491924311227y+10.717967697244908
Swap sides so that all variable terms are on the left hand side.
0.2679491924311227 = \frac{x}{40 - y}
Evaluate trigonometric functions in the problem
0.2679491924311227\left(-y+40\right)=x
Variable y cannot be equal to 40 since division by zero is not defined. Multiply both sides of the equation by -y+40.
-0.2679491924311227y+10.717967697244908=x
Use the distributive property to multiply 0.2679491924311227 by -y+40.
-0.2679491924311227y=x-10.717967697244908
Subtract 10.717967697244908 from both sides.
\frac{-0.2679491924311227y}{-0.2679491924311227}=\frac{x-10.717967697244908}{-0.2679491924311227}
Divide both sides of the equation by -0.2679491924311227, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{x-10.717967697244908}{-0.2679491924311227}
Dividing by -0.2679491924311227 undoes the multiplication by -0.2679491924311227.
y=-\frac{10000000000000000x}{2679491924311227}+40
Divide x-10.717967697244908 by -0.2679491924311227 by multiplying x-10.717967697244908 by the reciprocal of -0.2679491924311227.
y=-\frac{10000000000000000x}{2679491924311227}+40\text{, }y\neq 40
Variable y cannot be equal to 40.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}