Solve for g (complex solution)
g=\frac{\cos(2x)+3}{3x\left(\cos(2x)+1\right)}
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}\text{ and }x\neq 0
Solve for g
g=\frac{\left(\cos(x)\right)^{2}+1}{3x\left(\cos(x)\right)^{2}}
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}\text{ and }x\neq 0
Graph
Share
Copied to clipboard
-3gx+2=-\left(\tan(x)\right)^{2}
Subtract \left(\tan(x)\right)^{2} from both sides. Anything subtracted from zero gives its negation.
-3gx=-\left(\tan(x)\right)^{2}-2
Subtract 2 from both sides.
\left(-3x\right)g=-\left(\tan(x)\right)^{2}-2
The equation is in standard form.
\frac{\left(-3x\right)g}{-3x}=-\frac{\frac{1}{\left(\cos(x)\right)^{2}}+1}{-3x}
Divide both sides by -3x.
g=-\frac{\frac{1}{\left(\cos(x)\right)^{2}}+1}{-3x}
Dividing by -3x undoes the multiplication by -3x.
g=\frac{\frac{1}{\left(\cos(x)\right)^{2}}+1}{3x}
Divide -\left(\frac{1}{\left(\cos(x)\right)^{2}}+1\right) by -3x.
-3gx+2=-\left(\tan(x)\right)^{2}
Subtract \left(\tan(x)\right)^{2} from both sides. Anything subtracted from zero gives its negation.
-3gx=-\left(\tan(x)\right)^{2}-2
Subtract 2 from both sides.
\left(-3x\right)g=-\left(\tan(x)\right)^{2}-2
The equation is in standard form.
\frac{\left(-3x\right)g}{-3x}=-\frac{\frac{1}{\left(\cos(x)\right)^{2}}+1}{-3x}
Divide both sides by -3x.
g=-\frac{\frac{1}{\left(\cos(x)\right)^{2}}+1}{-3x}
Dividing by -3x undoes the multiplication by -3x.
g=\frac{\frac{1}{\left(\cos(x)\right)^{2}}+1}{3x}
Divide -\left(\frac{1}{\left(\cos(x)\right)^{2}}+1\right) by -3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}