Solve for x
x=10
Graph
Share
Copied to clipboard
\left(\sqrt{x-9}+2\right)^{2}=\left(\sqrt{x-1}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x-9}\right)^{2}+4\sqrt{x-9}+4=\left(\sqrt{x-1}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{x-9}+2\right)^{2}.
x-9+4\sqrt{x-9}+4=\left(\sqrt{x-1}\right)^{2}
Calculate \sqrt{x-9} to the power of 2 and get x-9.
x-5+4\sqrt{x-9}=\left(\sqrt{x-1}\right)^{2}
Add -9 and 4 to get -5.
x-5+4\sqrt{x-9}=x-1
Calculate \sqrt{x-1} to the power of 2 and get x-1.
x-5+4\sqrt{x-9}-x=-1
Subtract x from both sides.
-5+4\sqrt{x-9}=-1
Combine x and -x to get 0.
4\sqrt{x-9}=-1+5
Add 5 to both sides.
4\sqrt{x-9}=4
Add -1 and 5 to get 4.
\sqrt{x-9}=\frac{4}{4}
Divide both sides by 4.
\sqrt{x-9}=1
Divide 4 by 4 to get 1.
x-9=1
Square both sides of the equation.
x-9-\left(-9\right)=1-\left(-9\right)
Add 9 to both sides of the equation.
x=1-\left(-9\right)
Subtracting -9 from itself leaves 0.
x=10
Subtract -9 from 1.
\sqrt{10-9}+2=\sqrt{10-1}
Substitute 10 for x in the equation \sqrt{x-9}+2=\sqrt{x-1}.
3=3
Simplify. The value x=10 satisfies the equation.
x=10
Equation \sqrt{x-9}+2=\sqrt{x-1} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}