Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x-6}\right)^{2}=\left(23x-56\right)^{2}
Square both sides of the equation.
x-6=\left(23x-56\right)^{2}
Calculate \sqrt{x-6} to the power of 2 and get x-6.
x-6=529x^{2}-2576x+3136
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(23x-56\right)^{2}.
x-6-529x^{2}=-2576x+3136
Subtract 529x^{2} from both sides.
x-6-529x^{2}+2576x=3136
Add 2576x to both sides.
2577x-6-529x^{2}=3136
Combine x and 2576x to get 2577x.
2577x-6-529x^{2}-3136=0
Subtract 3136 from both sides.
2577x-3142-529x^{2}=0
Subtract 3136 from -6 to get -3142.
-529x^{2}+2577x-3142=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2577±\sqrt{2577^{2}-4\left(-529\right)\left(-3142\right)}}{2\left(-529\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -529 for a, 2577 for b, and -3142 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2577±\sqrt{6640929-4\left(-529\right)\left(-3142\right)}}{2\left(-529\right)}
Square 2577.
x=\frac{-2577±\sqrt{6640929+2116\left(-3142\right)}}{2\left(-529\right)}
Multiply -4 times -529.
x=\frac{-2577±\sqrt{6640929-6648472}}{2\left(-529\right)}
Multiply 2116 times -3142.
x=\frac{-2577±\sqrt{-7543}}{2\left(-529\right)}
Add 6640929 to -6648472.
x=\frac{-2577±\sqrt{7543}i}{2\left(-529\right)}
Take the square root of -7543.
x=\frac{-2577±\sqrt{7543}i}{-1058}
Multiply 2 times -529.
x=\frac{-2577+\sqrt{7543}i}{-1058}
Now solve the equation x=\frac{-2577±\sqrt{7543}i}{-1058} when ± is plus. Add -2577 to i\sqrt{7543}.
x=\frac{-\sqrt{7543}i+2577}{1058}
Divide -2577+i\sqrt{7543} by -1058.
x=\frac{-\sqrt{7543}i-2577}{-1058}
Now solve the equation x=\frac{-2577±\sqrt{7543}i}{-1058} when ± is minus. Subtract i\sqrt{7543} from -2577.
x=\frac{2577+\sqrt{7543}i}{1058}
Divide -2577-i\sqrt{7543} by -1058.
x=\frac{-\sqrt{7543}i+2577}{1058} x=\frac{2577+\sqrt{7543}i}{1058}
The equation is now solved.
\sqrt{\frac{-\sqrt{7543}i+2577}{1058}-6}=23\times \frac{-\sqrt{7543}i+2577}{1058}-56
Substitute \frac{-\sqrt{7543}i+2577}{1058} for x in the equation \sqrt{x-6}=23x-56.
-\left(\frac{1}{46}-\frac{1}{46}i\times 7543^{\frac{1}{2}}\right)=-\frac{1}{46}i\times 7543^{\frac{1}{2}}+\frac{1}{46}
Simplify. The value x=\frac{-\sqrt{7543}i+2577}{1058} does not satisfy the equation.
\sqrt{\frac{2577+\sqrt{7543}i}{1058}-6}=23\times \frac{2577+\sqrt{7543}i}{1058}-56
Substitute \frac{2577+\sqrt{7543}i}{1058} for x in the equation \sqrt{x-6}=23x-56.
\frac{1}{46}+\frac{1}{46}i\times 7543^{\frac{1}{2}}=\frac{1}{46}+\frac{1}{46}i\times 7543^{\frac{1}{2}}
Simplify. The value x=\frac{2577+\sqrt{7543}i}{1058} satisfies the equation.
x=\frac{2577+\sqrt{7543}i}{1058}
Equation \sqrt{x-6}=23x-56 has a unique solution.