Solve for x (complex solution)
x=\frac{-25+\sqrt{71}i}{2}\approx -12.5+4.213074887i
Graph
Share
Copied to clipboard
\sqrt{x-5}=13+x
Subtract -x from both sides of the equation.
\left(\sqrt{x-5}\right)^{2}=\left(13+x\right)^{2}
Square both sides of the equation.
x-5=\left(13+x\right)^{2}
Calculate \sqrt{x-5} to the power of 2 and get x-5.
x-5=169+26x+x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(13+x\right)^{2}.
x-5-169=26x+x^{2}
Subtract 169 from both sides.
x-174=26x+x^{2}
Subtract 169 from -5 to get -174.
x-174-26x=x^{2}
Subtract 26x from both sides.
-25x-174=x^{2}
Combine x and -26x to get -25x.
-25x-174-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}-25x-174=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\left(-1\right)\left(-174\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -25 for b, and -174 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-25\right)±\sqrt{625-4\left(-1\right)\left(-174\right)}}{2\left(-1\right)}
Square -25.
x=\frac{-\left(-25\right)±\sqrt{625+4\left(-174\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-25\right)±\sqrt{625-696}}{2\left(-1\right)}
Multiply 4 times -174.
x=\frac{-\left(-25\right)±\sqrt{-71}}{2\left(-1\right)}
Add 625 to -696.
x=\frac{-\left(-25\right)±\sqrt{71}i}{2\left(-1\right)}
Take the square root of -71.
x=\frac{25±\sqrt{71}i}{2\left(-1\right)}
The opposite of -25 is 25.
x=\frac{25±\sqrt{71}i}{-2}
Multiply 2 times -1.
x=\frac{25+\sqrt{71}i}{-2}
Now solve the equation x=\frac{25±\sqrt{71}i}{-2} when ± is plus. Add 25 to i\sqrt{71}.
x=\frac{-\sqrt{71}i-25}{2}
Divide 25+i\sqrt{71} by -2.
x=\frac{-\sqrt{71}i+25}{-2}
Now solve the equation x=\frac{25±\sqrt{71}i}{-2} when ± is minus. Subtract i\sqrt{71} from 25.
x=\frac{-25+\sqrt{71}i}{2}
Divide 25-i\sqrt{71} by -2.
x=\frac{-\sqrt{71}i-25}{2} x=\frac{-25+\sqrt{71}i}{2}
The equation is now solved.
\sqrt{\frac{-\sqrt{71}i-25}{2}-5}-\frac{-\sqrt{71}i-25}{2}=13
Substitute \frac{-\sqrt{71}i-25}{2} for x in the equation \sqrt{x-5}-x=13.
12+i\times 71^{\frac{1}{2}}=13
Simplify. The value x=\frac{-\sqrt{71}i-25}{2} does not satisfy the equation.
\sqrt{\frac{-25+\sqrt{71}i}{2}-5}-\frac{-25+\sqrt{71}i}{2}=13
Substitute \frac{-25+\sqrt{71}i}{2} for x in the equation \sqrt{x-5}-x=13.
13=13
Simplify. The value x=\frac{-25+\sqrt{71}i}{2} satisfies the equation.
x=\frac{-25+\sqrt{71}i}{2}
Equation \sqrt{x-5}=x+13 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}