Solve for x
x=13
Graph
Share
Copied to clipboard
\sqrt{x-4}=-\left(-\sqrt{4x-27}+\sqrt{x-9}\right)
Subtract -\sqrt{4x-27}+\sqrt{x-9} from both sides of the equation.
\sqrt{x-4}=-\left(-\sqrt{4x-27}\right)-\sqrt{x-9}
To find the opposite of -\sqrt{4x-27}+\sqrt{x-9}, find the opposite of each term.
\sqrt{x-4}=\sqrt{4x-27}-\sqrt{x-9}
The opposite of -\sqrt{4x-27} is \sqrt{4x-27}.
\left(\sqrt{x-4}\right)^{2}=\left(\sqrt{4x-27}-\sqrt{x-9}\right)^{2}
Square both sides of the equation.
x-4=\left(\sqrt{4x-27}-\sqrt{x-9}\right)^{2}
Calculate \sqrt{x-4} to the power of 2 and get x-4.
x-4=\left(\sqrt{4x-27}\right)^{2}-2\sqrt{4x-27}\sqrt{x-9}+\left(\sqrt{x-9}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{4x-27}-\sqrt{x-9}\right)^{2}.
x-4=4x-27-2\sqrt{4x-27}\sqrt{x-9}+\left(\sqrt{x-9}\right)^{2}
Calculate \sqrt{4x-27} to the power of 2 and get 4x-27.
x-4=4x-27-2\sqrt{4x-27}\sqrt{x-9}+x-9
Calculate \sqrt{x-9} to the power of 2 and get x-9.
x-4=5x-27-2\sqrt{4x-27}\sqrt{x-9}-9
Combine 4x and x to get 5x.
x-4=5x-36-2\sqrt{4x-27}\sqrt{x-9}
Subtract 9 from -27 to get -36.
x-4-\left(5x-36\right)=-2\sqrt{4x-27}\sqrt{x-9}
Subtract 5x-36 from both sides of the equation.
x-4-5x+36=-2\sqrt{4x-27}\sqrt{x-9}
To find the opposite of 5x-36, find the opposite of each term.
-4x-4+36=-2\sqrt{4x-27}\sqrt{x-9}
Combine x and -5x to get -4x.
-4x+32=-2\sqrt{4x-27}\sqrt{x-9}
Add -4 and 36 to get 32.
\left(-4x+32\right)^{2}=\left(-2\sqrt{4x-27}\sqrt{x-9}\right)^{2}
Square both sides of the equation.
16x^{2}-256x+1024=\left(-2\sqrt{4x-27}\sqrt{x-9}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-4x+32\right)^{2}.
16x^{2}-256x+1024=\left(-2\right)^{2}\left(\sqrt{4x-27}\right)^{2}\left(\sqrt{x-9}\right)^{2}
Expand \left(-2\sqrt{4x-27}\sqrt{x-9}\right)^{2}.
16x^{2}-256x+1024=4\left(\sqrt{4x-27}\right)^{2}\left(\sqrt{x-9}\right)^{2}
Calculate -2 to the power of 2 and get 4.
16x^{2}-256x+1024=4\left(4x-27\right)\left(\sqrt{x-9}\right)^{2}
Calculate \sqrt{4x-27} to the power of 2 and get 4x-27.
16x^{2}-256x+1024=4\left(4x-27\right)\left(x-9\right)
Calculate \sqrt{x-9} to the power of 2 and get x-9.
16x^{2}-256x+1024=\left(16x-108\right)\left(x-9\right)
Use the distributive property to multiply 4 by 4x-27.
16x^{2}-256x+1024=16x^{2}-144x-108x+972
Apply the distributive property by multiplying each term of 16x-108 by each term of x-9.
16x^{2}-256x+1024=16x^{2}-252x+972
Combine -144x and -108x to get -252x.
16x^{2}-256x+1024-16x^{2}=-252x+972
Subtract 16x^{2} from both sides.
-256x+1024=-252x+972
Combine 16x^{2} and -16x^{2} to get 0.
-256x+1024+252x=972
Add 252x to both sides.
-4x+1024=972
Combine -256x and 252x to get -4x.
-4x=972-1024
Subtract 1024 from both sides.
-4x=-52
Subtract 1024 from 972 to get -52.
x=\frac{-52}{-4}
Divide both sides by -4.
x=13
Divide -52 by -4 to get 13.
\sqrt{13-4}-\sqrt{4\times 13-27}+\sqrt{13-9}=0
Substitute 13 for x in the equation \sqrt{x-4}-\sqrt{4x-27}+\sqrt{x-9}=0.
0=0
Simplify. The value x=13 satisfies the equation.
x=13
Equation \sqrt{x-4}=\sqrt{4x-27}-\sqrt{x-9} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}