Solve for x
x=13
Graph
Share
Copied to clipboard
\left(\sqrt{x-4}+2\right)^{2}=\left(\sqrt{x+12}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x-4}\right)^{2}+4\sqrt{x-4}+4=\left(\sqrt{x+12}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{x-4}+2\right)^{2}.
x-4+4\sqrt{x-4}+4=\left(\sqrt{x+12}\right)^{2}
Calculate \sqrt{x-4} to the power of 2 and get x-4.
x+4\sqrt{x-4}=\left(\sqrt{x+12}\right)^{2}
Add -4 and 4 to get 0.
x+4\sqrt{x-4}=x+12
Calculate \sqrt{x+12} to the power of 2 and get x+12.
x+4\sqrt{x-4}-x=12
Subtract x from both sides.
4\sqrt{x-4}=12
Combine x and -x to get 0.
\sqrt{x-4}=\frac{12}{4}
Divide both sides by 4.
\sqrt{x-4}=3
Divide 12 by 4 to get 3.
x-4=9
Square both sides of the equation.
x-4-\left(-4\right)=9-\left(-4\right)
Add 4 to both sides of the equation.
x=9-\left(-4\right)
Subtracting -4 from itself leaves 0.
x=13
Subtract -4 from 9.
\sqrt{13-4}+2=\sqrt{13+12}
Substitute 13 for x in the equation \sqrt{x-4}+2=\sqrt{x+12}.
5=5
Simplify. The value x=13 satisfies the equation.
x=13
Equation \sqrt{x-4}+2=\sqrt{x+12} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}