Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x-3}\right)^{2}=\left(3x+5\right)^{2}
Square both sides of the equation.
x-3=\left(3x+5\right)^{2}
Calculate \sqrt{x-3} to the power of 2 and get x-3.
x-3=9x^{2}+30x+25
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+5\right)^{2}.
x-3-9x^{2}=30x+25
Subtract 9x^{2} from both sides.
x-3-9x^{2}-30x=25
Subtract 30x from both sides.
-29x-3-9x^{2}=25
Combine x and -30x to get -29x.
-29x-3-9x^{2}-25=0
Subtract 25 from both sides.
-29x-28-9x^{2}=0
Subtract 25 from -3 to get -28.
-9x^{2}-29x-28=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-29\right)±\sqrt{\left(-29\right)^{2}-4\left(-9\right)\left(-28\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, -29 for b, and -28 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-29\right)±\sqrt{841-4\left(-9\right)\left(-28\right)}}{2\left(-9\right)}
Square -29.
x=\frac{-\left(-29\right)±\sqrt{841+36\left(-28\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-\left(-29\right)±\sqrt{841-1008}}{2\left(-9\right)}
Multiply 36 times -28.
x=\frac{-\left(-29\right)±\sqrt{-167}}{2\left(-9\right)}
Add 841 to -1008.
x=\frac{-\left(-29\right)±\sqrt{167}i}{2\left(-9\right)}
Take the square root of -167.
x=\frac{29±\sqrt{167}i}{2\left(-9\right)}
The opposite of -29 is 29.
x=\frac{29±\sqrt{167}i}{-18}
Multiply 2 times -9.
x=\frac{29+\sqrt{167}i}{-18}
Now solve the equation x=\frac{29±\sqrt{167}i}{-18} when ± is plus. Add 29 to i\sqrt{167}.
x=\frac{-\sqrt{167}i-29}{18}
Divide 29+i\sqrt{167} by -18.
x=\frac{-\sqrt{167}i+29}{-18}
Now solve the equation x=\frac{29±\sqrt{167}i}{-18} when ± is minus. Subtract i\sqrt{167} from 29.
x=\frac{-29+\sqrt{167}i}{18}
Divide 29-i\sqrt{167} by -18.
x=\frac{-\sqrt{167}i-29}{18} x=\frac{-29+\sqrt{167}i}{18}
The equation is now solved.
\sqrt{\frac{-\sqrt{167}i-29}{18}-3}=3\times \frac{-\sqrt{167}i-29}{18}+5
Substitute \frac{-\sqrt{167}i-29}{18} for x in the equation \sqrt{x-3}=3x+5.
-\left(\frac{1}{6}-\frac{1}{6}i\times 167^{\frac{1}{2}}\right)=-\frac{1}{6}i\times 167^{\frac{1}{2}}+\frac{1}{6}
Simplify. The value x=\frac{-\sqrt{167}i-29}{18} does not satisfy the equation.
\sqrt{\frac{-29+\sqrt{167}i}{18}-3}=3\times \frac{-29+\sqrt{167}i}{18}+5
Substitute \frac{-29+\sqrt{167}i}{18} for x in the equation \sqrt{x-3}=3x+5.
\frac{1}{6}+\frac{1}{6}i\times 167^{\frac{1}{2}}=\frac{1}{6}+\frac{1}{6}i\times 167^{\frac{1}{2}}
Simplify. The value x=\frac{-29+\sqrt{167}i}{18} satisfies the equation.
x=\frac{-29+\sqrt{167}i}{18}
Equation \sqrt{x-3}=3x+5 has a unique solution.