Solve for x
x=2
Graph
Share
Copied to clipboard
\sqrt{x+7}=2+\sqrt{3-x}
Subtract -\sqrt{3-x} from both sides of the equation.
\left(\sqrt{x+7}\right)^{2}=\left(2+\sqrt{3-x}\right)^{2}
Square both sides of the equation.
x+7=\left(2+\sqrt{3-x}\right)^{2}
Calculate \sqrt{x+7} to the power of 2 and get x+7.
x+7=4+4\sqrt{3-x}+\left(\sqrt{3-x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{3-x}\right)^{2}.
x+7=4+4\sqrt{3-x}+3-x
Calculate \sqrt{3-x} to the power of 2 and get 3-x.
x+7=7+4\sqrt{3-x}-x
Add 4 and 3 to get 7.
x+7-\left(7-x\right)=4\sqrt{3-x}
Subtract 7-x from both sides of the equation.
x+7-7+x=4\sqrt{3-x}
To find the opposite of 7-x, find the opposite of each term.
x+x=4\sqrt{3-x}
Subtract 7 from 7 to get 0.
2x=4\sqrt{3-x}
Combine x and x to get 2x.
\left(2x\right)^{2}=\left(4\sqrt{3-x}\right)^{2}
Square both sides of the equation.
2^{2}x^{2}=\left(4\sqrt{3-x}\right)^{2}
Expand \left(2x\right)^{2}.
4x^{2}=\left(4\sqrt{3-x}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4x^{2}=4^{2}\left(\sqrt{3-x}\right)^{2}
Expand \left(4\sqrt{3-x}\right)^{2}.
4x^{2}=16\left(\sqrt{3-x}\right)^{2}
Calculate 4 to the power of 2 and get 16.
4x^{2}=16\left(3-x\right)
Calculate \sqrt{3-x} to the power of 2 and get 3-x.
4x^{2}=48-16x
Use the distributive property to multiply 16 by 3-x.
4x^{2}-48=-16x
Subtract 48 from both sides.
4x^{2}-48+16x=0
Add 16x to both sides.
x^{2}-12+4x=0
Divide both sides by 4.
x^{2}+4x-12=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=4 ab=1\left(-12\right)=-12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-12. To find a and b, set up a system to be solved.
-1,12 -2,6 -3,4
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -12.
-1+12=11 -2+6=4 -3+4=1
Calculate the sum for each pair.
a=-2 b=6
The solution is the pair that gives sum 4.
\left(x^{2}-2x\right)+\left(6x-12\right)
Rewrite x^{2}+4x-12 as \left(x^{2}-2x\right)+\left(6x-12\right).
x\left(x-2\right)+6\left(x-2\right)
Factor out x in the first and 6 in the second group.
\left(x-2\right)\left(x+6\right)
Factor out common term x-2 by using distributive property.
x=2 x=-6
To find equation solutions, solve x-2=0 and x+6=0.
\sqrt{2+7}-\sqrt{3-2}=2
Substitute 2 for x in the equation \sqrt{x+7}-\sqrt{3-x}=2.
2=2
Simplify. The value x=2 satisfies the equation.
\sqrt{-6+7}-\sqrt{3-\left(-6\right)}=2
Substitute -6 for x in the equation \sqrt{x+7}-\sqrt{3-x}=2.
-2=2
Simplify. The value x=-6 does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{2+7}-\sqrt{3-2}=2
Substitute 2 for x in the equation \sqrt{x+7}-\sqrt{3-x}=2.
2=2
Simplify. The value x=2 satisfies the equation.
x=2
Equation \sqrt{x+7}=\sqrt{3-x}+2 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}