Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x+6}=2+\sqrt{x-2}
Subtract -\sqrt{x-2} from both sides of the equation.
\left(\sqrt{x+6}\right)^{2}=\left(2+\sqrt{x-2}\right)^{2}
Square both sides of the equation.
x+6=\left(2+\sqrt{x-2}\right)^{2}
Calculate \sqrt{x+6} to the power of 2 and get x+6.
x+6=4+4\sqrt{x-2}+\left(\sqrt{x-2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{x-2}\right)^{2}.
x+6=4+4\sqrt{x-2}+x-2
Calculate \sqrt{x-2} to the power of 2 and get x-2.
x+6=2+4\sqrt{x-2}+x
Subtract 2 from 4 to get 2.
x+6-4\sqrt{x-2}=2+x
Subtract 4\sqrt{x-2} from both sides.
x+6-4\sqrt{x-2}-x=2
Subtract x from both sides.
6-4\sqrt{x-2}=2
Combine x and -x to get 0.
-4\sqrt{x-2}=2-6
Subtract 6 from both sides.
-4\sqrt{x-2}=-4
Subtract 6 from 2 to get -4.
\sqrt{x-2}=\frac{-4}{-4}
Divide both sides by -4.
\sqrt{x-2}=1
Divide -4 by -4 to get 1.
x-2=1
Square both sides of the equation.
x-2-\left(-2\right)=1-\left(-2\right)
Add 2 to both sides of the equation.
x=1-\left(-2\right)
Subtracting -2 from itself leaves 0.
x=3
Subtract -2 from 1.
\sqrt{3+6}-\sqrt{3-2}=2
Substitute 3 for x in the equation \sqrt{x+6}-\sqrt{x-2}=2.
2=2
Simplify. The value x=3 satisfies the equation.
x=3
Equation \sqrt{x+6}=\sqrt{x-2}+2 has a unique solution.