Solve for x
x=-5
Graph
Share
Copied to clipboard
\left(\sqrt{x+6}-\sqrt{9x+70}\right)^{2}=\left(-2\sqrt{x+9}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x+6}\right)^{2}-2\sqrt{x+6}\sqrt{9x+70}+\left(\sqrt{9x+70}\right)^{2}=\left(-2\sqrt{x+9}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{x+6}-\sqrt{9x+70}\right)^{2}.
x+6-2\sqrt{x+6}\sqrt{9x+70}+\left(\sqrt{9x+70}\right)^{2}=\left(-2\sqrt{x+9}\right)^{2}
Calculate \sqrt{x+6} to the power of 2 and get x+6.
x+6-2\sqrt{x+6}\sqrt{9x+70}+9x+70=\left(-2\sqrt{x+9}\right)^{2}
Calculate \sqrt{9x+70} to the power of 2 and get 9x+70.
10x+6-2\sqrt{x+6}\sqrt{9x+70}+70=\left(-2\sqrt{x+9}\right)^{2}
Combine x and 9x to get 10x.
10x+76-2\sqrt{x+6}\sqrt{9x+70}=\left(-2\sqrt{x+9}\right)^{2}
Add 6 and 70 to get 76.
10x+76-2\sqrt{x+6}\sqrt{9x+70}=\left(-2\right)^{2}\left(\sqrt{x+9}\right)^{2}
Expand \left(-2\sqrt{x+9}\right)^{2}.
10x+76-2\sqrt{x+6}\sqrt{9x+70}=4\left(\sqrt{x+9}\right)^{2}
Calculate -2 to the power of 2 and get 4.
10x+76-2\sqrt{x+6}\sqrt{9x+70}=4\left(x+9\right)
Calculate \sqrt{x+9} to the power of 2 and get x+9.
10x+76-2\sqrt{x+6}\sqrt{9x+70}=4x+36
Use the distributive property to multiply 4 by x+9.
-2\sqrt{x+6}\sqrt{9x+70}=4x+36-\left(10x+76\right)
Subtract 10x+76 from both sides of the equation.
-2\sqrt{x+6}\sqrt{9x+70}=4x+36-10x-76
To find the opposite of 10x+76, find the opposite of each term.
-2\sqrt{x+6}\sqrt{9x+70}=-6x+36-76
Combine 4x and -10x to get -6x.
-2\sqrt{x+6}\sqrt{9x+70}=-6x-40
Subtract 76 from 36 to get -40.
\left(-2\sqrt{x+6}\sqrt{9x+70}\right)^{2}=\left(-6x-40\right)^{2}
Square both sides of the equation.
\left(-2\right)^{2}\left(\sqrt{x+6}\right)^{2}\left(\sqrt{9x+70}\right)^{2}=\left(-6x-40\right)^{2}
Expand \left(-2\sqrt{x+6}\sqrt{9x+70}\right)^{2}.
4\left(\sqrt{x+6}\right)^{2}\left(\sqrt{9x+70}\right)^{2}=\left(-6x-40\right)^{2}
Calculate -2 to the power of 2 and get 4.
4\left(x+6\right)\left(\sqrt{9x+70}\right)^{2}=\left(-6x-40\right)^{2}
Calculate \sqrt{x+6} to the power of 2 and get x+6.
4\left(x+6\right)\left(9x+70\right)=\left(-6x-40\right)^{2}
Calculate \sqrt{9x+70} to the power of 2 and get 9x+70.
\left(4x+24\right)\left(9x+70\right)=\left(-6x-40\right)^{2}
Use the distributive property to multiply 4 by x+6.
36x^{2}+280x+216x+1680=\left(-6x-40\right)^{2}
Apply the distributive property by multiplying each term of 4x+24 by each term of 9x+70.
36x^{2}+496x+1680=\left(-6x-40\right)^{2}
Combine 280x and 216x to get 496x.
36x^{2}+496x+1680=36x^{2}+480x+1600
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-6x-40\right)^{2}.
36x^{2}+496x+1680-36x^{2}=480x+1600
Subtract 36x^{2} from both sides.
496x+1680=480x+1600
Combine 36x^{2} and -36x^{2} to get 0.
496x+1680-480x=1600
Subtract 480x from both sides.
16x+1680=1600
Combine 496x and -480x to get 16x.
16x=1600-1680
Subtract 1680 from both sides.
16x=-80
Subtract 1680 from 1600 to get -80.
x=\frac{-80}{16}
Divide both sides by 16.
x=-5
Divide -80 by 16 to get -5.
\sqrt{-5+6}-\sqrt{9\left(-5\right)+70}=-2\sqrt{-5+9}
Substitute -5 for x in the equation \sqrt{x+6}-\sqrt{9x+70}=-2\sqrt{x+9}.
-4=-4
Simplify. The value x=-5 satisfies the equation.
x=-5
Equation \sqrt{x+6}-\sqrt{9x+70}=-2\sqrt{x+9} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}