Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x+6}=7-\sqrt{x-29}
Subtract \sqrt{x-29} from both sides of the equation.
\left(\sqrt{x+6}\right)^{2}=\left(7-\sqrt{x-29}\right)^{2}
Square both sides of the equation.
x+6=\left(7-\sqrt{x-29}\right)^{2}
Calculate \sqrt{x+6} to the power of 2 and get x+6.
x+6=49-14\sqrt{x-29}+\left(\sqrt{x-29}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7-\sqrt{x-29}\right)^{2}.
x+6=49-14\sqrt{x-29}+x-29
Calculate \sqrt{x-29} to the power of 2 and get x-29.
x+6=20-14\sqrt{x-29}+x
Subtract 29 from 49 to get 20.
x+6+14\sqrt{x-29}=20+x
Add 14\sqrt{x-29} to both sides.
x+6+14\sqrt{x-29}-x=20
Subtract x from both sides.
6+14\sqrt{x-29}=20
Combine x and -x to get 0.
14\sqrt{x-29}=20-6
Subtract 6 from both sides.
14\sqrt{x-29}=14
Subtract 6 from 20 to get 14.
\sqrt{x-29}=\frac{14}{14}
Divide both sides by 14.
\sqrt{x-29}=1
Divide 14 by 14 to get 1.
x-29=1
Square both sides of the equation.
x-29-\left(-29\right)=1-\left(-29\right)
Add 29 to both sides of the equation.
x=1-\left(-29\right)
Subtracting -29 from itself leaves 0.
x=30
Subtract -29 from 1.
\sqrt{30+6}+\sqrt{30-29}=7
Substitute 30 for x in the equation \sqrt{x+6}+\sqrt{x-29}=7.
7=7
Simplify. The value x=30 satisfies the equation.
x=30
Equation \sqrt{x+6}=-\sqrt{x-29}+7 has a unique solution.