Solve for x
x=\frac{\sqrt{17}-3}{2}\approx 0.561552813
Graph
Share
Copied to clipboard
\left(\sqrt{x+6}\right)^{2}=\left(4-\left(\sqrt{2-x}\right)^{2}\right)^{2}
Square both sides of the equation.
x+6=\left(4-\left(\sqrt{2-x}\right)^{2}\right)^{2}
Calculate \sqrt{x+6} to the power of 2 and get x+6.
x+6=\left(4-\left(2-x\right)\right)^{2}
Calculate \sqrt{2-x} to the power of 2 and get 2-x.
x+6=\left(4-2+x\right)^{2}
To find the opposite of 2-x, find the opposite of each term.
x+6=\left(2+x\right)^{2}
Subtract 2 from 4 to get 2.
x+6=4+4x+x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+x\right)^{2}.
x+6-4=4x+x^{2}
Subtract 4 from both sides.
x+2=4x+x^{2}
Subtract 4 from 6 to get 2.
x+2-4x=x^{2}
Subtract 4x from both sides.
-3x+2=x^{2}
Combine x and -4x to get -3x.
-3x+2-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}-3x+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-1\right)\times 2}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -3 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-1\right)\times 2}}{2\left(-1\right)}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+4\times 2}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-3\right)±\sqrt{9+8}}{2\left(-1\right)}
Multiply 4 times 2.
x=\frac{-\left(-3\right)±\sqrt{17}}{2\left(-1\right)}
Add 9 to 8.
x=\frac{3±\sqrt{17}}{2\left(-1\right)}
The opposite of -3 is 3.
x=\frac{3±\sqrt{17}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{17}+3}{-2}
Now solve the equation x=\frac{3±\sqrt{17}}{-2} when ± is plus. Add 3 to \sqrt{17}.
x=\frac{-\sqrt{17}-3}{2}
Divide 3+\sqrt{17} by -2.
x=\frac{3-\sqrt{17}}{-2}
Now solve the equation x=\frac{3±\sqrt{17}}{-2} when ± is minus. Subtract \sqrt{17} from 3.
x=\frac{\sqrt{17}-3}{2}
Divide 3-\sqrt{17} by -2.
x=\frac{-\sqrt{17}-3}{2} x=\frac{\sqrt{17}-3}{2}
The equation is now solved.
\sqrt{\frac{-\sqrt{17}-3}{2}+6}=4-\left(\sqrt{2-\frac{-\sqrt{17}-3}{2}}\right)^{2}
Substitute \frac{-\sqrt{17}-3}{2} for x in the equation \sqrt{x+6}=4-\left(\sqrt{2-x}\right)^{2}.
-\left(\frac{1}{2}-\frac{1}{2}\times 17^{\frac{1}{2}}\right)=\frac{1}{2}-\frac{1}{2}\times 17^{\frac{1}{2}}
Simplify. The value x=\frac{-\sqrt{17}-3}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{\frac{\sqrt{17}-3}{2}+6}=4-\left(\sqrt{2-\frac{\sqrt{17}-3}{2}}\right)^{2}
Substitute \frac{\sqrt{17}-3}{2} for x in the equation \sqrt{x+6}=4-\left(\sqrt{2-x}\right)^{2}.
\frac{1}{2}+\frac{1}{2}\times 17^{\frac{1}{2}}=\frac{1}{2}+\frac{1}{2}\times 17^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{17}-3}{2} satisfies the equation.
x=\frac{\sqrt{17}-3}{2}
Equation \sqrt{x+6}=4-\left(\sqrt{2-x}\right)^{2} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}