Solve for x
x = \frac{\sqrt{21} + 1}{2} \approx 2.791287847
Graph
Share
Copied to clipboard
\left(\sqrt{x+5}\right)^{2}=x^{2}
Square both sides of the equation.
x+5=x^{2}
Calculate \sqrt{x+5} to the power of 2 and get x+5.
x+5-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}+x+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 1 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-1\right)\times 5}}{2\left(-1\right)}
Square 1.
x=\frac{-1±\sqrt{1+4\times 5}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-1±\sqrt{1+20}}{2\left(-1\right)}
Multiply 4 times 5.
x=\frac{-1±\sqrt{21}}{2\left(-1\right)}
Add 1 to 20.
x=\frac{-1±\sqrt{21}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{21}-1}{-2}
Now solve the equation x=\frac{-1±\sqrt{21}}{-2} when ± is plus. Add -1 to \sqrt{21}.
x=\frac{1-\sqrt{21}}{2}
Divide -1+\sqrt{21} by -2.
x=\frac{-\sqrt{21}-1}{-2}
Now solve the equation x=\frac{-1±\sqrt{21}}{-2} when ± is minus. Subtract \sqrt{21} from -1.
x=\frac{\sqrt{21}+1}{2}
Divide -1-\sqrt{21} by -2.
x=\frac{1-\sqrt{21}}{2} x=\frac{\sqrt{21}+1}{2}
The equation is now solved.
\sqrt{\frac{1-\sqrt{21}}{2}+5}=\frac{1-\sqrt{21}}{2}
Substitute \frac{1-\sqrt{21}}{2} for x in the equation \sqrt{x+5}=x.
-\left(\frac{1}{2}-\frac{1}{2}\times 21^{\frac{1}{2}}\right)=\frac{1}{2}-\frac{1}{2}\times 21^{\frac{1}{2}}
Simplify. The value x=\frac{1-\sqrt{21}}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{\frac{\sqrt{21}+1}{2}+5}=\frac{\sqrt{21}+1}{2}
Substitute \frac{\sqrt{21}+1}{2} for x in the equation \sqrt{x+5}=x.
\frac{1}{2}+\frac{1}{2}\times 21^{\frac{1}{2}}=\frac{1}{2}\times 21^{\frac{1}{2}}+\frac{1}{2}
Simplify. The value x=\frac{\sqrt{21}+1}{2} satisfies the equation.
x=\frac{\sqrt{21}+1}{2}
Equation \sqrt{x+5}=x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}