Solve for x
x = \frac{13}{4} = 3\frac{1}{4} = 3.25
Graph
Share
Copied to clipboard
\sqrt{x+3}=3-\sqrt{x-3}
Subtract \sqrt{x-3} from both sides of the equation.
\left(\sqrt{x+3}\right)^{2}=\left(3-\sqrt{x-3}\right)^{2}
Square both sides of the equation.
x+3=\left(3-\sqrt{x-3}\right)^{2}
Calculate \sqrt{x+3} to the power of 2 and get x+3.
x+3=9-6\sqrt{x-3}+\left(\sqrt{x-3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-\sqrt{x-3}\right)^{2}.
x+3=9-6\sqrt{x-3}+x-3
Calculate \sqrt{x-3} to the power of 2 and get x-3.
x+3=6-6\sqrt{x-3}+x
Subtract 3 from 9 to get 6.
x+3+6\sqrt{x-3}=6+x
Add 6\sqrt{x-3} to both sides.
x+3+6\sqrt{x-3}-x=6
Subtract x from both sides.
3+6\sqrt{x-3}=6
Combine x and -x to get 0.
6\sqrt{x-3}=6-3
Subtract 3 from both sides.
6\sqrt{x-3}=3
Subtract 3 from 6 to get 3.
\sqrt{x-3}=\frac{3}{6}
Divide both sides by 6.
\sqrt{x-3}=\frac{1}{2}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
x-3=\frac{1}{4}
Square both sides of the equation.
x-3-\left(-3\right)=\frac{1}{4}-\left(-3\right)
Add 3 to both sides of the equation.
x=\frac{1}{4}-\left(-3\right)
Subtracting -3 from itself leaves 0.
x=\frac{13}{4}
Subtract -3 from \frac{1}{4}.
\sqrt{\frac{13}{4}+3}+\sqrt{\frac{13}{4}-3}=3
Substitute \frac{13}{4} for x in the equation \sqrt{x+3}+\sqrt{x-3}=3.
3=3
Simplify. The value x=\frac{13}{4} satisfies the equation.
x=\frac{13}{4}
Equation \sqrt{x+3}=-\sqrt{x-3}+3 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}