Solve for x
x=-2
Graph
Share
Copied to clipboard
\left(\sqrt{x+3}+\sqrt{x+6}\right)^{2}=\left(\sqrt{x+11}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x+3}\right)^{2}+2\sqrt{x+3}\sqrt{x+6}+\left(\sqrt{x+6}\right)^{2}=\left(\sqrt{x+11}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{x+3}+\sqrt{x+6}\right)^{2}.
x+3+2\sqrt{x+3}\sqrt{x+6}+\left(\sqrt{x+6}\right)^{2}=\left(\sqrt{x+11}\right)^{2}
Calculate \sqrt{x+3} to the power of 2 and get x+3.
x+3+2\sqrt{x+3}\sqrt{x+6}+x+6=\left(\sqrt{x+11}\right)^{2}
Calculate \sqrt{x+6} to the power of 2 and get x+6.
2x+3+2\sqrt{x+3}\sqrt{x+6}+6=\left(\sqrt{x+11}\right)^{2}
Combine x and x to get 2x.
2x+9+2\sqrt{x+3}\sqrt{x+6}=\left(\sqrt{x+11}\right)^{2}
Add 3 and 6 to get 9.
2x+9+2\sqrt{x+3}\sqrt{x+6}=x+11
Calculate \sqrt{x+11} to the power of 2 and get x+11.
2\sqrt{x+3}\sqrt{x+6}=x+11-\left(2x+9\right)
Subtract 2x+9 from both sides of the equation.
2\sqrt{x+3}\sqrt{x+6}=x+11-2x-9
To find the opposite of 2x+9, find the opposite of each term.
2\sqrt{x+3}\sqrt{x+6}=-x+11-9
Combine x and -2x to get -x.
2\sqrt{x+3}\sqrt{x+6}=-x+2
Subtract 9 from 11 to get 2.
\left(2\sqrt{x+3}\sqrt{x+6}\right)^{2}=\left(-x+2\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{x+3}\right)^{2}\left(\sqrt{x+6}\right)^{2}=\left(-x+2\right)^{2}
Expand \left(2\sqrt{x+3}\sqrt{x+6}\right)^{2}.
4\left(\sqrt{x+3}\right)^{2}\left(\sqrt{x+6}\right)^{2}=\left(-x+2\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(x+3\right)\left(\sqrt{x+6}\right)^{2}=\left(-x+2\right)^{2}
Calculate \sqrt{x+3} to the power of 2 and get x+3.
4\left(x+3\right)\left(x+6\right)=\left(-x+2\right)^{2}
Calculate \sqrt{x+6} to the power of 2 and get x+6.
\left(4x+12\right)\left(x+6\right)=\left(-x+2\right)^{2}
Use the distributive property to multiply 4 by x+3.
4x^{2}+24x+12x+72=\left(-x+2\right)^{2}
Apply the distributive property by multiplying each term of 4x+12 by each term of x+6.
4x^{2}+36x+72=\left(-x+2\right)^{2}
Combine 24x and 12x to get 36x.
4x^{2}+36x+72=x^{2}-4x+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-x+2\right)^{2}.
4x^{2}+36x+72-x^{2}=-4x+4
Subtract x^{2} from both sides.
3x^{2}+36x+72=-4x+4
Combine 4x^{2} and -x^{2} to get 3x^{2}.
3x^{2}+36x+72+4x=4
Add 4x to both sides.
3x^{2}+40x+72=4
Combine 36x and 4x to get 40x.
3x^{2}+40x+72-4=0
Subtract 4 from both sides.
3x^{2}+40x+68=0
Subtract 4 from 72 to get 68.
a+b=40 ab=3\times 68=204
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx+68. To find a and b, set up a system to be solved.
1,204 2,102 3,68 4,51 6,34 12,17
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 204.
1+204=205 2+102=104 3+68=71 4+51=55 6+34=40 12+17=29
Calculate the sum for each pair.
a=6 b=34
The solution is the pair that gives sum 40.
\left(3x^{2}+6x\right)+\left(34x+68\right)
Rewrite 3x^{2}+40x+68 as \left(3x^{2}+6x\right)+\left(34x+68\right).
3x\left(x+2\right)+34\left(x+2\right)
Factor out 3x in the first and 34 in the second group.
\left(x+2\right)\left(3x+34\right)
Factor out common term x+2 by using distributive property.
x=-2 x=-\frac{34}{3}
To find equation solutions, solve x+2=0 and 3x+34=0.
\sqrt{-\frac{34}{3}+3}+\sqrt{-\frac{34}{3}+6}=\sqrt{-\frac{34}{3}+11}
Substitute -\frac{34}{3} for x in the equation \sqrt{x+3}+\sqrt{x+6}=\sqrt{x+11}. The expression \sqrt{-\frac{34}{3}+3} is undefined because the radicand cannot be negative.
\sqrt{-2+3}+\sqrt{-2+6}=\sqrt{-2+11}
Substitute -2 for x in the equation \sqrt{x+3}+\sqrt{x+6}=\sqrt{x+11}.
3=3
Simplify. The value x=-2 satisfies the equation.
x=-2
Equation \sqrt{x+3}+\sqrt{x+6}=\sqrt{x+11} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}