Solve for x
x = \frac{\sqrt{65} + 9}{8} \approx 2.132782219
Graph
Share
Copied to clipboard
\left(\sqrt{x+3}\right)^{2}=\left(\sqrt{5x}-1\right)^{2}
Square both sides of the equation.
x+3=\left(\sqrt{5x}-1\right)^{2}
Calculate \sqrt{x+3} to the power of 2 and get x+3.
x+3=\left(\sqrt{5x}\right)^{2}-2\sqrt{5x}+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5x}-1\right)^{2}.
x+3=5x-2\sqrt{5x}+1
Calculate \sqrt{5x} to the power of 2 and get 5x.
x+3-\left(5x+1\right)=-2\sqrt{5x}
Subtract 5x+1 from both sides of the equation.
x+3-5x-1=-2\sqrt{5x}
To find the opposite of 5x+1, find the opposite of each term.
-4x+3-1=-2\sqrt{5x}
Combine x and -5x to get -4x.
-4x+2=-2\sqrt{5x}
Subtract 1 from 3 to get 2.
\left(-4x+2\right)^{2}=\left(-2\sqrt{5x}\right)^{2}
Square both sides of the equation.
16x^{2}-16x+4=\left(-2\sqrt{5x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-4x+2\right)^{2}.
16x^{2}-16x+4=\left(-2\right)^{2}\left(\sqrt{5x}\right)^{2}
Expand \left(-2\sqrt{5x}\right)^{2}.
16x^{2}-16x+4=4\left(\sqrt{5x}\right)^{2}
Calculate -2 to the power of 2 and get 4.
16x^{2}-16x+4=4\times 5x
Calculate \sqrt{5x} to the power of 2 and get 5x.
16x^{2}-16x+4=20x
Multiply 4 and 5 to get 20.
16x^{2}-16x+4-20x=0
Subtract 20x from both sides.
16x^{2}-36x+4=0
Combine -16x and -20x to get -36x.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 16\times 4}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -36 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-36\right)±\sqrt{1296-4\times 16\times 4}}{2\times 16}
Square -36.
x=\frac{-\left(-36\right)±\sqrt{1296-64\times 4}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-36\right)±\sqrt{1296-256}}{2\times 16}
Multiply -64 times 4.
x=\frac{-\left(-36\right)±\sqrt{1040}}{2\times 16}
Add 1296 to -256.
x=\frac{-\left(-36\right)±4\sqrt{65}}{2\times 16}
Take the square root of 1040.
x=\frac{36±4\sqrt{65}}{2\times 16}
The opposite of -36 is 36.
x=\frac{36±4\sqrt{65}}{32}
Multiply 2 times 16.
x=\frac{4\sqrt{65}+36}{32}
Now solve the equation x=\frac{36±4\sqrt{65}}{32} when ± is plus. Add 36 to 4\sqrt{65}.
x=\frac{\sqrt{65}+9}{8}
Divide 36+4\sqrt{65} by 32.
x=\frac{36-4\sqrt{65}}{32}
Now solve the equation x=\frac{36±4\sqrt{65}}{32} when ± is minus. Subtract 4\sqrt{65} from 36.
x=\frac{9-\sqrt{65}}{8}
Divide 36-4\sqrt{65} by 32.
x=\frac{\sqrt{65}+9}{8} x=\frac{9-\sqrt{65}}{8}
The equation is now solved.
\sqrt{\frac{\sqrt{65}+9}{8}+3}=\sqrt{5\times \frac{\sqrt{65}+9}{8}}-1
Substitute \frac{\sqrt{65}+9}{8} for x in the equation \sqrt{x+3}=\sqrt{5x}-1.
\frac{1}{4}+\frac{1}{4}\times 65^{\frac{1}{2}}=\frac{1}{4}+\frac{1}{4}\times 65^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{65}+9}{8} satisfies the equation.
\sqrt{\frac{9-\sqrt{65}}{8}+3}=\sqrt{5\times \frac{9-\sqrt{65}}{8}}-1
Substitute \frac{9-\sqrt{65}}{8} for x in the equation \sqrt{x+3}=\sqrt{5x}-1.
-\left(\frac{1}{4}-\frac{1}{4}\times 65^{\frac{1}{2}}\right)=-\frac{9}{4}+\frac{1}{4}\times 65^{\frac{1}{2}}
Simplify. The value x=\frac{9-\sqrt{65}}{8} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{\frac{\sqrt{65}+9}{8}+3}=\sqrt{5\times \frac{\sqrt{65}+9}{8}}-1
Substitute \frac{\sqrt{65}+9}{8} for x in the equation \sqrt{x+3}=\sqrt{5x}-1.
\frac{1}{4}+\frac{1}{4}\times 65^{\frac{1}{2}}=\frac{1}{4}+\frac{1}{4}\times 65^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{65}+9}{8} satisfies the equation.
x=\frac{\sqrt{65}+9}{8}
Equation \sqrt{x+3}=\sqrt{5x}-1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}