Solve for x
x=2
Graph
Share
Copied to clipboard
\sqrt{x+2}=2+\sqrt{x-2}
Subtract -\sqrt{x-2} from both sides of the equation.
\left(\sqrt{x+2}\right)^{2}=\left(2+\sqrt{x-2}\right)^{2}
Square both sides of the equation.
x+2=\left(2+\sqrt{x-2}\right)^{2}
Calculate \sqrt{x+2} to the power of 2 and get x+2.
x+2=4+4\sqrt{x-2}+\left(\sqrt{x-2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{x-2}\right)^{2}.
x+2=4+4\sqrt{x-2}+x-2
Calculate \sqrt{x-2} to the power of 2 and get x-2.
x+2=2+4\sqrt{x-2}+x
Subtract 2 from 4 to get 2.
x+2-4\sqrt{x-2}=2+x
Subtract 4\sqrt{x-2} from both sides.
x+2-4\sqrt{x-2}-x=2
Subtract x from both sides.
2-4\sqrt{x-2}=2
Combine x and -x to get 0.
-4\sqrt{x-2}=2-2
Subtract 2 from both sides.
-4\sqrt{x-2}=0
Subtract 2 from 2 to get 0.
\sqrt{x-2}=0
Divide both sides by -4. Zero divided by any non-zero number gives zero.
x-2=0
Square both sides of the equation.
x-2-\left(-2\right)=-\left(-2\right)
Add 2 to both sides of the equation.
x=-\left(-2\right)
Subtracting -2 from itself leaves 0.
x=2
Subtract -2 from 0.
\sqrt{2+2}-\sqrt{2-2}=2
Substitute 2 for x in the equation \sqrt{x+2}-\sqrt{x-2}=2.
2=2
Simplify. The value x=2 satisfies the equation.
x=2
Equation \sqrt{x+2}=\sqrt{x-2}+2 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}