Solve for x
x=7
Graph
Share
Copied to clipboard
\sqrt{x+2}=10-x
Subtract x from both sides of the equation.
\left(\sqrt{x+2}\right)^{2}=\left(10-x\right)^{2}
Square both sides of the equation.
x+2=\left(10-x\right)^{2}
Calculate \sqrt{x+2} to the power of 2 and get x+2.
x+2=100-20x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10-x\right)^{2}.
x+2-100=-20x+x^{2}
Subtract 100 from both sides.
x-98=-20x+x^{2}
Subtract 100 from 2 to get -98.
x-98+20x=x^{2}
Add 20x to both sides.
21x-98=x^{2}
Combine x and 20x to get 21x.
21x-98-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}+21x-98=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=21 ab=-\left(-98\right)=98
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-98. To find a and b, set up a system to be solved.
1,98 2,49 7,14
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 98.
1+98=99 2+49=51 7+14=21
Calculate the sum for each pair.
a=14 b=7
The solution is the pair that gives sum 21.
\left(-x^{2}+14x\right)+\left(7x-98\right)
Rewrite -x^{2}+21x-98 as \left(-x^{2}+14x\right)+\left(7x-98\right).
-x\left(x-14\right)+7\left(x-14\right)
Factor out -x in the first and 7 in the second group.
\left(x-14\right)\left(-x+7\right)
Factor out common term x-14 by using distributive property.
x=14 x=7
To find equation solutions, solve x-14=0 and -x+7=0.
\sqrt{14+2}+14=10
Substitute 14 for x in the equation \sqrt{x+2}+x=10.
18=10
Simplify. The value x=14 does not satisfy the equation.
\sqrt{7+2}+7=10
Substitute 7 for x in the equation \sqrt{x+2}+x=10.
10=10
Simplify. The value x=7 satisfies the equation.
x=7
Equation \sqrt{x+2}=10-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}