Solve for x
x=2
Graph
Share
Copied to clipboard
\sqrt{x+2}=5-\sqrt{x+7}
Subtract \sqrt{x+7} from both sides of the equation.
\left(\sqrt{x+2}\right)^{2}=\left(5-\sqrt{x+7}\right)^{2}
Square both sides of the equation.
x+2=\left(5-\sqrt{x+7}\right)^{2}
Calculate \sqrt{x+2} to the power of 2 and get x+2.
x+2=25-10\sqrt{x+7}+\left(\sqrt{x+7}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-\sqrt{x+7}\right)^{2}.
x+2=25-10\sqrt{x+7}+x+7
Calculate \sqrt{x+7} to the power of 2 and get x+7.
x+2=32-10\sqrt{x+7}+x
Add 25 and 7 to get 32.
x+2+10\sqrt{x+7}=32+x
Add 10\sqrt{x+7} to both sides.
x+2+10\sqrt{x+7}-x=32
Subtract x from both sides.
2+10\sqrt{x+7}=32
Combine x and -x to get 0.
10\sqrt{x+7}=32-2
Subtract 2 from both sides.
10\sqrt{x+7}=30
Subtract 2 from 32 to get 30.
\sqrt{x+7}=\frac{30}{10}
Divide both sides by 10.
\sqrt{x+7}=3
Divide 30 by 10 to get 3.
x+7=9
Square both sides of the equation.
x+7-7=9-7
Subtract 7 from both sides of the equation.
x=9-7
Subtracting 7 from itself leaves 0.
x=2
Subtract 7 from 9.
\sqrt{2+2}+\sqrt{2+7}=5
Substitute 2 for x in the equation \sqrt{x+2}+\sqrt{x+7}=5.
5=5
Simplify. The value x=2 satisfies the equation.
x=2
Equation \sqrt{x+2}=-\sqrt{x+7}+5 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}