Solve for x
x=9
Graph
Share
Copied to clipboard
\sqrt{x+16}=2+\sqrt{x}
Subtract -\sqrt{x} from both sides of the equation.
\left(\sqrt{x+16}\right)^{2}=\left(2+\sqrt{x}\right)^{2}
Square both sides of the equation.
x+16=\left(2+\sqrt{x}\right)^{2}
Calculate \sqrt{x+16} to the power of 2 and get x+16.
x+16=4+4\sqrt{x}+\left(\sqrt{x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{x}\right)^{2}.
x+16=4+4\sqrt{x}+x
Calculate \sqrt{x} to the power of 2 and get x.
x+16-4\sqrt{x}=4+x
Subtract 4\sqrt{x} from both sides.
x+16-4\sqrt{x}-x=4
Subtract x from both sides.
16-4\sqrt{x}=4
Combine x and -x to get 0.
-4\sqrt{x}=4-16
Subtract 16 from both sides.
-4\sqrt{x}=-12
Subtract 16 from 4 to get -12.
\sqrt{x}=\frac{-12}{-4}
Divide both sides by -4.
\sqrt{x}=3
Divide -12 by -4 to get 3.
x=9
Square both sides of the equation.
\sqrt{9+16}-\sqrt{9}=2
Substitute 9 for x in the equation \sqrt{x+16}-\sqrt{x}=2.
2=2
Simplify. The value x=9 satisfies the equation.
x=9
Equation \sqrt{x+16}=\sqrt{x}+2 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}