Solve for x
x=7
Graph
Share
Copied to clipboard
\left(\sqrt{x+15}\right)^{2}=\left(\sqrt{3x+1}\right)^{2}
Square both sides of the equation.
x+15=\left(\sqrt{3x+1}\right)^{2}
Calculate \sqrt{x+15} to the power of 2 and get x+15.
x+15=3x+1
Calculate \sqrt{3x+1} to the power of 2 and get 3x+1.
x+15-3x=1
Subtract 3x from both sides.
-2x+15=1
Combine x and -3x to get -2x.
-2x=1-15
Subtract 15 from both sides.
-2x=-14
Subtract 15 from 1 to get -14.
x=\frac{-14}{-2}
Divide both sides by -2.
x=7
Divide -14 by -2 to get 7.
\sqrt{7+15}=\sqrt{3\times 7+1}
Substitute 7 for x in the equation \sqrt{x+15}=\sqrt{3x+1}.
22^{\frac{1}{2}}=22^{\frac{1}{2}}
Simplify. The value x=7 satisfies the equation.
x=7
Equation \sqrt{x+15}=\sqrt{3x+1} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}