Solve for x
x=-6
Graph
Share
Copied to clipboard
\sqrt{x+15}=\frac{4}{\sqrt{x+7}}-\sqrt{x+7}
Subtract \sqrt{x+7} from both sides of the equation.
\left(\sqrt{x+15}\right)^{2}=\left(\frac{4}{\sqrt{x+7}}-\sqrt{x+7}\right)^{2}
Square both sides of the equation.
x+15=\left(\frac{4}{\sqrt{x+7}}-\sqrt{x+7}\right)^{2}
Calculate \sqrt{x+15} to the power of 2 and get x+15.
x+15=\left(\frac{4}{\sqrt{x+7}}\right)^{2}-2\times \frac{4}{\sqrt{x+7}}\sqrt{x+7}+\left(\sqrt{x+7}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{4}{\sqrt{x+7}}-\sqrt{x+7}\right)^{2}.
x+15=\frac{4^{2}}{\left(\sqrt{x+7}\right)^{2}}-2\times \frac{4}{\sqrt{x+7}}\sqrt{x+7}+\left(\sqrt{x+7}\right)^{2}
To raise \frac{4}{\sqrt{x+7}} to a power, raise both numerator and denominator to the power and then divide.
x+15=\frac{4^{2}}{\left(\sqrt{x+7}\right)^{2}}+\frac{-2\times 4}{\sqrt{x+7}}\sqrt{x+7}+\left(\sqrt{x+7}\right)^{2}
Express -2\times \frac{4}{\sqrt{x+7}} as a single fraction.
x+15=\frac{4^{2}}{\left(\sqrt{x+7}\right)^{2}}+\frac{-2\times 4\sqrt{x+7}}{\sqrt{x+7}}+\left(\sqrt{x+7}\right)^{2}
Express \frac{-2\times 4}{\sqrt{x+7}}\sqrt{x+7} as a single fraction.
x+15=\frac{4^{2}}{\left(\sqrt{x+7}\right)^{2}}+\frac{-2\times 4\sqrt{x+7}}{\sqrt{x+7}}+x+7
Calculate \sqrt{x+7} to the power of 2 and get x+7.
x+15=\frac{4^{2}}{\left(\sqrt{x+7}\right)^{2}}+\frac{-2\times 4\sqrt{x+7}}{\sqrt{x+7}}+\frac{\left(x+7\right)\left(\sqrt{x+7}\right)^{2}}{\left(\sqrt{x+7}\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x+7 times \frac{\left(\sqrt{x+7}\right)^{2}}{\left(\sqrt{x+7}\right)^{2}}.
x+15=\frac{4^{2}+\left(x+7\right)\left(\sqrt{x+7}\right)^{2}}{\left(\sqrt{x+7}\right)^{2}}+\frac{-2\times 4\sqrt{x+7}}{\sqrt{x+7}}
Since \frac{4^{2}}{\left(\sqrt{x+7}\right)^{2}} and \frac{\left(x+7\right)\left(\sqrt{x+7}\right)^{2}}{\left(\sqrt{x+7}\right)^{2}} have the same denominator, add them by adding their numerators.
x+15=\frac{4^{2}}{\left(\sqrt{x+7}\right)^{2}}+\frac{-2\times 4\sqrt{x+7}}{\sqrt{x+7}}+\frac{\left(x+7\right)\left(\sqrt{x+7}\right)^{2}}{\left(\sqrt{x+7}\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x+7 times \frac{\left(\sqrt{x+7}\right)^{2}}{\left(\sqrt{x+7}\right)^{2}}.
x+15=\frac{4^{2}+\left(x+7\right)\left(\sqrt{x+7}\right)^{2}}{\left(\sqrt{x+7}\right)^{2}}+\frac{-2\times 4\sqrt{x+7}}{\sqrt{x+7}}
Since \frac{4^{2}}{\left(\sqrt{x+7}\right)^{2}} and \frac{\left(x+7\right)\left(\sqrt{x+7}\right)^{2}}{\left(\sqrt{x+7}\right)^{2}} have the same denominator, add them by adding their numerators.
x+15=\frac{4^{2}}{\left(\sqrt{x+7}\right)^{2}}+\frac{-2\times 4\sqrt{x+7}}{\sqrt{x+7}}+\frac{\left(x+7\right)\sqrt{x+7}}{\sqrt{x+7}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x+7 times \frac{\sqrt{x+7}}{\sqrt{x+7}}.
x+15=\frac{4^{2}}{\left(\sqrt{x+7}\right)^{2}}+\frac{-2\times 4\sqrt{x+7}+\left(x+7\right)\sqrt{x+7}}{\sqrt{x+7}}
Since \frac{-2\times 4\sqrt{x+7}}{\sqrt{x+7}} and \frac{\left(x+7\right)\sqrt{x+7}}{\sqrt{x+7}} have the same denominator, add them by adding their numerators.
x+15=\frac{4^{2}}{\left(\sqrt{x+7}\right)^{2}}+\frac{-8\sqrt{x+7}+x\sqrt{x+7}+7\sqrt{x+7}}{\sqrt{x+7}}
Do the multiplications in -2\times 4\sqrt{x+7}+\left(x+7\right)\sqrt{x+7}.
x+15=\frac{4^{2}}{\left(\sqrt{x+7}\right)^{2}}+\frac{-\sqrt{x+7}+x\sqrt{x+7}}{\sqrt{x+7}}
Combine like terms in -8\sqrt{x+7}+x\sqrt{x+7}+7\sqrt{x+7}.
x+15=\frac{16}{\left(\sqrt{x+7}\right)^{2}}+\frac{-\sqrt{x+7}+x\sqrt{x+7}}{\sqrt{x+7}}
Calculate 4 to the power of 2 and get 16.
x+15=\frac{16}{x+7}+\frac{-\sqrt{x+7}+x\sqrt{x+7}}{\sqrt{x+7}}
Calculate \sqrt{x+7} to the power of 2 and get x+7.
\left(x+7\right)x+\left(x+7\right)\times 15=16+\left(x+7\right)^{\frac{1}{2}}\left(-\sqrt{x+7}+x\sqrt{x+7}\right)
Multiply both sides of the equation by x+7.
x\left(x+7\right)+15\left(x+7\right)=\sqrt{x+7}\left(\sqrt{x+7}x-\sqrt{x+7}\right)+16
Reorder the terms.
x^{2}+7x+15\left(x+7\right)=\sqrt{x+7}\left(\sqrt{x+7}x-\sqrt{x+7}\right)+16
Use the distributive property to multiply x by x+7.
x^{2}+7x+15x+105=\sqrt{x+7}\left(\sqrt{x+7}x-\sqrt{x+7}\right)+16
Use the distributive property to multiply 15 by x+7.
x^{2}+22x+105=\sqrt{x+7}\left(\sqrt{x+7}x-\sqrt{x+7}\right)+16
Combine 7x and 15x to get 22x.
x^{2}+22x+105=x\left(\sqrt{x+7}\right)^{2}-\left(\sqrt{x+7}\right)^{2}+16
Use the distributive property to multiply \sqrt{x+7} by \sqrt{x+7}x-\sqrt{x+7}.
x^{2}+22x+105=x\left(x+7\right)-\left(\sqrt{x+7}\right)^{2}+16
Calculate \sqrt{x+7} to the power of 2 and get x+7.
x^{2}+22x+105=x^{2}+7x-\left(\sqrt{x+7}\right)^{2}+16
Use the distributive property to multiply x by x+7.
x^{2}+22x+105=x^{2}+7x-\left(x+7\right)+16
Calculate \sqrt{x+7} to the power of 2 and get x+7.
x^{2}+22x+105=x^{2}+7x-x-7+16
To find the opposite of x+7, find the opposite of each term.
x^{2}+22x+105=x^{2}+6x-7+16
Combine 7x and -x to get 6x.
x^{2}+22x+105=x^{2}+6x+9
Add -7 and 16 to get 9.
x^{2}+22x+105-x^{2}=6x+9
Subtract x^{2} from both sides.
22x+105=6x+9
Combine x^{2} and -x^{2} to get 0.
22x+105-6x=9
Subtract 6x from both sides.
16x+105=9
Combine 22x and -6x to get 16x.
16x=9-105
Subtract 105 from both sides.
16x=-96
Subtract 105 from 9 to get -96.
x=\frac{-96}{16}
Divide both sides by 16.
x=-6
Divide -96 by 16 to get -6.
\sqrt{-6+15}+\sqrt{-6+7}=\frac{4}{\sqrt{-6+7}}
Substitute -6 for x in the equation \sqrt{x+15}+\sqrt{x+7}=\frac{4}{\sqrt{x+7}}.
4=4
Simplify. The value x=-6 satisfies the equation.
x=-6
Equation \sqrt{x+15}=-\sqrt{x+7}+\frac{4}{\sqrt{x+7}} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}