Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x+1}+\sqrt{3x+4}\right)^{2}=\left(\sqrt{5x+9}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x+1}\right)^{2}+2\sqrt{x+1}\sqrt{3x+4}+\left(\sqrt{3x+4}\right)^{2}=\left(\sqrt{5x+9}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{x+1}+\sqrt{3x+4}\right)^{2}.
x+1+2\sqrt{x+1}\sqrt{3x+4}+\left(\sqrt{3x+4}\right)^{2}=\left(\sqrt{5x+9}\right)^{2}
Calculate \sqrt{x+1} to the power of 2 and get x+1.
x+1+2\sqrt{x+1}\sqrt{3x+4}+3x+4=\left(\sqrt{5x+9}\right)^{2}
Calculate \sqrt{3x+4} to the power of 2 and get 3x+4.
4x+1+2\sqrt{x+1}\sqrt{3x+4}+4=\left(\sqrt{5x+9}\right)^{2}
Combine x and 3x to get 4x.
4x+5+2\sqrt{x+1}\sqrt{3x+4}=\left(\sqrt{5x+9}\right)^{2}
Add 1 and 4 to get 5.
4x+5+2\sqrt{x+1}\sqrt{3x+4}=5x+9
Calculate \sqrt{5x+9} to the power of 2 and get 5x+9.
2\sqrt{x+1}\sqrt{3x+4}=5x+9-\left(4x+5\right)
Subtract 4x+5 from both sides of the equation.
2\sqrt{x+1}\sqrt{3x+4}=5x+9-4x-5
To find the opposite of 4x+5, find the opposite of each term.
2\sqrt{x+1}\sqrt{3x+4}=x+9-5
Combine 5x and -4x to get x.
2\sqrt{x+1}\sqrt{3x+4}=x+4
Subtract 5 from 9 to get 4.
\left(2\sqrt{x+1}\sqrt{3x+4}\right)^{2}=\left(x+4\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{x+1}\right)^{2}\left(\sqrt{3x+4}\right)^{2}=\left(x+4\right)^{2}
Expand \left(2\sqrt{x+1}\sqrt{3x+4}\right)^{2}.
4\left(\sqrt{x+1}\right)^{2}\left(\sqrt{3x+4}\right)^{2}=\left(x+4\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(x+1\right)\left(\sqrt{3x+4}\right)^{2}=\left(x+4\right)^{2}
Calculate \sqrt{x+1} to the power of 2 and get x+1.
4\left(x+1\right)\left(3x+4\right)=\left(x+4\right)^{2}
Calculate \sqrt{3x+4} to the power of 2 and get 3x+4.
\left(4x+4\right)\left(3x+4\right)=\left(x+4\right)^{2}
Use the distributive property to multiply 4 by x+1.
12x^{2}+16x+12x+16=\left(x+4\right)^{2}
Apply the distributive property by multiplying each term of 4x+4 by each term of 3x+4.
12x^{2}+28x+16=\left(x+4\right)^{2}
Combine 16x and 12x to get 28x.
12x^{2}+28x+16=x^{2}+8x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+4\right)^{2}.
12x^{2}+28x+16-x^{2}=8x+16
Subtract x^{2} from both sides.
11x^{2}+28x+16=8x+16
Combine 12x^{2} and -x^{2} to get 11x^{2}.
11x^{2}+28x+16-8x=16
Subtract 8x from both sides.
11x^{2}+20x+16=16
Combine 28x and -8x to get 20x.
11x^{2}+20x+16-16=0
Subtract 16 from both sides.
11x^{2}+20x=0
Subtract 16 from 16 to get 0.
x\left(11x+20\right)=0
Factor out x.
x=0 x=-\frac{20}{11}
To find equation solutions, solve x=0 and 11x+20=0.
\sqrt{-\frac{20}{11}+1}+\sqrt{3\left(-\frac{20}{11}\right)+4}=\sqrt{5\left(-\frac{20}{11}\right)+9}
Substitute -\frac{20}{11} for x in the equation \sqrt{x+1}+\sqrt{3x+4}=\sqrt{5x+9}. The expression \sqrt{-\frac{20}{11}+1} is undefined because the radicand cannot be negative.
\sqrt{0+1}+\sqrt{3\times 0+4}=\sqrt{5\times 0+9}
Substitute 0 for x in the equation \sqrt{x+1}+\sqrt{3x+4}=\sqrt{5x+9}.
3=3
Simplify. The value x=0 satisfies the equation.
x=0
Equation \sqrt{x+1}+\sqrt{3x+4}=\sqrt{5x+9} has a unique solution.