Solve for x
\left\{\begin{matrix}x=\frac{z^{2}}{y}\text{, }&z\geq 0\text{ and }y\neq 0\\x\in \mathrm{R}\text{, }&z=0\text{ and }y=0\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=\frac{z^{2}}{x}\text{, }&z\geq 0\text{ and }x\neq 0\\y\in \mathrm{R}\text{, }&z=0\text{ and }x=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{z^{2}}{y}\text{, }&y\neq 0\text{ and }\left(z=0\text{ or }arg(z)<\pi \right)\\x\in \mathrm{C}\text{, }&z=0\text{ and }y=0\end{matrix}\right.
Solve for y (complex solution)
\left\{\begin{matrix}y=\frac{z^{2}}{x}\text{, }&x\neq 0\text{ and }\left(z=0\text{ or }arg(z)<\pi \right)\\y\in \mathrm{C}\text{, }&z=0\text{ and }x=0\end{matrix}\right.
Share
Copied to clipboard
yx=z^{2}
Square both sides of the equation.
\frac{yx}{y}=\frac{z^{2}}{y}
Divide both sides by y.
x=\frac{z^{2}}{y}
Dividing by y undoes the multiplication by y.
xy=z^{2}
Square both sides of the equation.
\frac{xy}{x}=\frac{z^{2}}{x}
Divide both sides by x.
y=\frac{z^{2}}{x}
Dividing by x undoes the multiplication by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}