Solve for x (complex solution)
x=\frac{-1+\sqrt{3}i}{2}\approx -0.5+0.866025404i
Graph
Share
Copied to clipboard
\sqrt{x}=1+x
Subtract -x from both sides of the equation.
\left(\sqrt{x}\right)^{2}=\left(1+x\right)^{2}
Square both sides of the equation.
x=\left(1+x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=1+2x+x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
x-1=2x+x^{2}
Subtract 1 from both sides.
x-1-2x=x^{2}
Subtract 2x from both sides.
-x-1=x^{2}
Combine x and -2x to get -x.
-x-1-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}-x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -1 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+4\left(-1\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-1\right)±\sqrt{1-4}}{2\left(-1\right)}
Multiply 4 times -1.
x=\frac{-\left(-1\right)±\sqrt{-3}}{2\left(-1\right)}
Add 1 to -4.
x=\frac{-\left(-1\right)±\sqrt{3}i}{2\left(-1\right)}
Take the square root of -3.
x=\frac{1±\sqrt{3}i}{2\left(-1\right)}
The opposite of -1 is 1.
x=\frac{1±\sqrt{3}i}{-2}
Multiply 2 times -1.
x=\frac{1+\sqrt{3}i}{-2}
Now solve the equation x=\frac{1±\sqrt{3}i}{-2} when ± is plus. Add 1 to i\sqrt{3}.
x=\frac{-\sqrt{3}i-1}{2}
Divide 1+i\sqrt{3} by -2.
x=\frac{-\sqrt{3}i+1}{-2}
Now solve the equation x=\frac{1±\sqrt{3}i}{-2} when ± is minus. Subtract i\sqrt{3} from 1.
x=\frac{-1+\sqrt{3}i}{2}
Divide 1-i\sqrt{3} by -2.
x=\frac{-\sqrt{3}i-1}{2} x=\frac{-1+\sqrt{3}i}{2}
The equation is now solved.
\sqrt{\frac{-\sqrt{3}i-1}{2}}-\frac{-\sqrt{3}i-1}{2}=1
Substitute \frac{-\sqrt{3}i-1}{2} for x in the equation \sqrt{x}-x=1.
i\times 3^{\frac{1}{2}}=1
Simplify. The value x=\frac{-\sqrt{3}i-1}{2} does not satisfy the equation.
\sqrt{\frac{-1+\sqrt{3}i}{2}}-\frac{-1+\sqrt{3}i}{2}=1
Substitute \frac{-1+\sqrt{3}i}{2} for x in the equation \sqrt{x}-x=1.
1=1
Simplify. The value x=\frac{-1+\sqrt{3}i}{2} satisfies the equation.
x=\frac{-1+\sqrt{3}i}{2}
Equation \sqrt{x}=x+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}