Solve for x
x=\left(\sqrt{y}+2\right)^{2}
y\geq 0
Solve for y
y=\left(\sqrt{x}-2\right)^{2}
x\geq 0\text{ and }\sqrt{x}-2\geq 0
Solve for x (complex solution)
x=\left(\sqrt{y}+2\right)^{2}
arg(\sqrt{y}+2)<\pi
Solve for y (complex solution)
y=\left(\sqrt{x}-2\right)^{2}
x=4\text{ or }arg(\sqrt{x}-2)<\pi
Graph
Share
Copied to clipboard
\sqrt{x}-\sqrt{y}-\left(-\sqrt{y}\right)=2-\left(-\sqrt{y}\right)
Subtract -\sqrt{y} from both sides of the equation.
\sqrt{x}=2-\left(-\sqrt{y}\right)
Subtracting -\sqrt{y} from itself leaves 0.
\sqrt{x}=\sqrt{y}+2
Subtract -\sqrt{y} from 2.
x=\left(\sqrt{y}+2\right)^{2}
Square both sides of the equation.
-\sqrt{y}+\sqrt{x}-\sqrt{x}=2-\sqrt{x}
Subtract \sqrt{x} from both sides of the equation.
-\sqrt{y}=2-\sqrt{x}
Subtracting \sqrt{x} from itself leaves 0.
-\sqrt{y}=-\sqrt{x}+2
Subtract \sqrt{x} from 2.
\frac{-\sqrt{y}}{-1}=\frac{-\sqrt{x}+2}{-1}
Divide both sides by -1.
\sqrt{y}=\frac{-\sqrt{x}+2}{-1}
Dividing by -1 undoes the multiplication by -1.
\sqrt{y}=\sqrt{x}-2
Divide 2-\sqrt{x} by -1.
y=\left(\sqrt{x}-2\right)^{2}
Square both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}