Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x}\right)^{2}=\left(\sqrt{1+\sqrt{x}}\right)^{2}
Square both sides of the equation.
x=\left(\sqrt{1+\sqrt{x}}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=1+\sqrt{x}
Calculate \sqrt{1+\sqrt{x}} to the power of 2 and get 1+\sqrt{x}.
x-1=\sqrt{x}
Subtract 1 from both sides of the equation.
\left(x-1\right)^{2}=\left(\sqrt{x}\right)^{2}
Square both sides of the equation.
x^{2}-2x+1=\left(\sqrt{x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-2x+1=x
Calculate \sqrt{x} to the power of 2 and get x.
x^{2}-2x+1-x=0
Subtract x from both sides.
x^{2}-3x+1=0
Combine -2x and -x to get -3x.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4}}{2}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{5}}{2}
Add 9 to -4.
x=\frac{3±\sqrt{5}}{2}
The opposite of -3 is 3.
x=\frac{\sqrt{5}+3}{2}
Now solve the equation x=\frac{3±\sqrt{5}}{2} when ± is plus. Add 3 to \sqrt{5}.
x=\frac{3-\sqrt{5}}{2}
Now solve the equation x=\frac{3±\sqrt{5}}{2} when ± is minus. Subtract \sqrt{5} from 3.
x=\frac{\sqrt{5}+3}{2} x=\frac{3-\sqrt{5}}{2}
The equation is now solved.
\sqrt{\frac{\sqrt{5}+3}{2}}=\sqrt{1+\sqrt{\frac{\sqrt{5}+3}{2}}}
Substitute \frac{\sqrt{5}+3}{2} for x in the equation \sqrt{x}=\sqrt{1+\sqrt{x}}.
\frac{1}{2}+\frac{1}{2}\times 5^{\frac{1}{2}}=\frac{1}{2}+\frac{1}{2}\times 5^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{5}+3}{2} satisfies the equation.
\sqrt{\frac{3-\sqrt{5}}{2}}=\sqrt{1+\sqrt{\frac{3-\sqrt{5}}{2}}}
Substitute \frac{3-\sqrt{5}}{2} for x in the equation \sqrt{x}=\sqrt{1+\sqrt{x}}.
-\left(\frac{1}{2}-\frac{1}{2}\times 5^{\frac{1}{2}}\right)=\left(\frac{1}{2}+\frac{1}{2}\times 5^{\frac{1}{2}}\right)^{\frac{1}{2}}
Simplify. The value x=\frac{3-\sqrt{5}}{2} does not satisfy the equation.
\sqrt{\frac{\sqrt{5}+3}{2}}=\sqrt{1+\sqrt{\frac{\sqrt{5}+3}{2}}}
Substitute \frac{\sqrt{5}+3}{2} for x in the equation \sqrt{x}=\sqrt{1+\sqrt{x}}.
\frac{1}{2}+\frac{1}{2}\times 5^{\frac{1}{2}}=\frac{1}{2}+\frac{1}{2}\times 5^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{5}+3}{2} satisfies the equation.
x=\frac{\sqrt{5}+3}{2}
Equation \sqrt{x}=\sqrt{\sqrt{x}+1} has a unique solution.