Solve for x
x = \frac{\sqrt{5} + 3}{2} \approx 2.618033989
Graph
Share
Copied to clipboard
\left(\sqrt{x}\right)^{2}=\left(\sqrt{1+\sqrt{x}}\right)^{2}
Square both sides of the equation.
x=\left(\sqrt{1+\sqrt{x}}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=1+\sqrt{x}
Calculate \sqrt{1+\sqrt{x}} to the power of 2 and get 1+\sqrt{x}.
x-1=\sqrt{x}
Subtract 1 from both sides of the equation.
\left(x-1\right)^{2}=\left(\sqrt{x}\right)^{2}
Square both sides of the equation.
x^{2}-2x+1=\left(\sqrt{x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{2}-2x+1=x
Calculate \sqrt{x} to the power of 2 and get x.
x^{2}-2x+1-x=0
Subtract x from both sides.
x^{2}-3x+1=0
Combine -2x and -x to get -3x.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -3 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4}}{2}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{5}}{2}
Add 9 to -4.
x=\frac{3±\sqrt{5}}{2}
The opposite of -3 is 3.
x=\frac{\sqrt{5}+3}{2}
Now solve the equation x=\frac{3±\sqrt{5}}{2} when ± is plus. Add 3 to \sqrt{5}.
x=\frac{3-\sqrt{5}}{2}
Now solve the equation x=\frac{3±\sqrt{5}}{2} when ± is minus. Subtract \sqrt{5} from 3.
x=\frac{\sqrt{5}+3}{2} x=\frac{3-\sqrt{5}}{2}
The equation is now solved.
\sqrt{\frac{\sqrt{5}+3}{2}}=\sqrt{1+\sqrt{\frac{\sqrt{5}+3}{2}}}
Substitute \frac{\sqrt{5}+3}{2} for x in the equation \sqrt{x}=\sqrt{1+\sqrt{x}}.
\frac{1}{2}+\frac{1}{2}\times 5^{\frac{1}{2}}=\frac{1}{2}+\frac{1}{2}\times 5^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{5}+3}{2} satisfies the equation.
\sqrt{\frac{3-\sqrt{5}}{2}}=\sqrt{1+\sqrt{\frac{3-\sqrt{5}}{2}}}
Substitute \frac{3-\sqrt{5}}{2} for x in the equation \sqrt{x}=\sqrt{1+\sqrt{x}}.
-\left(\frac{1}{2}-\frac{1}{2}\times 5^{\frac{1}{2}}\right)=\left(\frac{1}{2}+\frac{1}{2}\times 5^{\frac{1}{2}}\right)^{\frac{1}{2}}
Simplify. The value x=\frac{3-\sqrt{5}}{2} does not satisfy the equation.
\sqrt{\frac{\sqrt{5}+3}{2}}=\sqrt{1+\sqrt{\frac{\sqrt{5}+3}{2}}}
Substitute \frac{\sqrt{5}+3}{2} for x in the equation \sqrt{x}=\sqrt{1+\sqrt{x}}.
\frac{1}{2}+\frac{1}{2}\times 5^{\frac{1}{2}}=\frac{1}{2}+\frac{1}{2}\times 5^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{5}+3}{2} satisfies the equation.
x=\frac{\sqrt{5}+3}{2}
Equation \sqrt{x}=\sqrt{\sqrt{x}+1} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}