Solve for x
x = \frac{11 - \sqrt{21}}{2} \approx 3.208712153
Graph
Share
Copied to clipboard
\sqrt{x}=5-x
Subtract x from both sides of the equation.
\left(\sqrt{x}\right)^{2}=\left(5-x\right)^{2}
Square both sides of the equation.
x=\left(5-x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=25-10x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-x\right)^{2}.
x-25=-10x+x^{2}
Subtract 25 from both sides.
x-25+10x=x^{2}
Add 10x to both sides.
11x-25=x^{2}
Combine x and 10x to get 11x.
11x-25-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}+11x-25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-11±\sqrt{11^{2}-4\left(-1\right)\left(-25\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 11 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-11±\sqrt{121-4\left(-1\right)\left(-25\right)}}{2\left(-1\right)}
Square 11.
x=\frac{-11±\sqrt{121+4\left(-25\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-11±\sqrt{121-100}}{2\left(-1\right)}
Multiply 4 times -25.
x=\frac{-11±\sqrt{21}}{2\left(-1\right)}
Add 121 to -100.
x=\frac{-11±\sqrt{21}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{21}-11}{-2}
Now solve the equation x=\frac{-11±\sqrt{21}}{-2} when ± is plus. Add -11 to \sqrt{21}.
x=\frac{11-\sqrt{21}}{2}
Divide -11+\sqrt{21} by -2.
x=\frac{-\sqrt{21}-11}{-2}
Now solve the equation x=\frac{-11±\sqrt{21}}{-2} when ± is minus. Subtract \sqrt{21} from -11.
x=\frac{\sqrt{21}+11}{2}
Divide -11-\sqrt{21} by -2.
x=\frac{11-\sqrt{21}}{2} x=\frac{\sqrt{21}+11}{2}
The equation is now solved.
\sqrt{\frac{11-\sqrt{21}}{2}}+\frac{11-\sqrt{21}}{2}=5
Substitute \frac{11-\sqrt{21}}{2} for x in the equation \sqrt{x}+x=5.
5=5
Simplify. The value x=\frac{11-\sqrt{21}}{2} satisfies the equation.
\sqrt{\frac{\sqrt{21}+11}{2}}+\frac{\sqrt{21}+11}{2}=5
Substitute \frac{\sqrt{21}+11}{2} for x in the equation \sqrt{x}+x=5.
6+21^{\frac{1}{2}}=5
Simplify. The value x=\frac{\sqrt{21}+11}{2} does not satisfy the equation.
x=\frac{11-\sqrt{21}}{2}
Equation \sqrt{x}=5-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}