Solve for y (complex solution)
y=\frac{3x+\sqrt{x}}{5}
Solve for y
y=\frac{3x+\sqrt{x}}{5}
x\geq 0
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\left(\sqrt{60y+1}+1\right)^{2}}{36}\text{, }&arg(\frac{\sqrt{60y+1}+1}{6})\geq \pi \\x=0\text{, }&y=0\\x=\frac{\left(-\sqrt{60y+1}+1\right)^{2}}{36}\text{, }&arg(\frac{-\sqrt{60y+1}+1}{6})\geq \pi \end{matrix}\right.
Solve for x
x=\frac{\left(-\sqrt{60y+1}+1\right)^{2}}{36}
y\geq -\frac{1}{60}\text{ and }-\frac{-\sqrt{60y+1}+1}{6}\geq 0
Graph
Share
Copied to clipboard
5y=\sqrt{x}+3x
Swap sides so that all variable terms are on the left hand side.
5y=3x+\sqrt{x}
The equation is in standard form.
\frac{5y}{5}=\frac{3x+\sqrt{x}}{5}
Divide both sides by 5.
y=\frac{3x+\sqrt{x}}{5}
Dividing by 5 undoes the multiplication by 5.
5y=\sqrt{x}+3x
Swap sides so that all variable terms are on the left hand side.
5y=3x+\sqrt{x}
The equation is in standard form.
\frac{5y}{5}=\frac{3x+\sqrt{x}}{5}
Divide both sides by 5.
y=\frac{3x+\sqrt{x}}{5}
Dividing by 5 undoes the multiplication by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}