Solve for x
x = \frac{30001 - \sqrt{60001}}{18} \approx 1653.113832472
Graph
Share
Copied to clipboard
\sqrt{x}=5000-3x
Subtract 3x from both sides of the equation.
\left(\sqrt{x}\right)^{2}=\left(5000-3x\right)^{2}
Square both sides of the equation.
x=\left(5000-3x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=25000000-30000x+9x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5000-3x\right)^{2}.
x-25000000=-30000x+9x^{2}
Subtract 25000000 from both sides.
x-25000000+30000x=9x^{2}
Add 30000x to both sides.
30001x-25000000=9x^{2}
Combine x and 30000x to get 30001x.
30001x-25000000-9x^{2}=0
Subtract 9x^{2} from both sides.
-9x^{2}+30001x-25000000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-30001±\sqrt{30001^{2}-4\left(-9\right)\left(-25000000\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 30001 for b, and -25000000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30001±\sqrt{900060001-4\left(-9\right)\left(-25000000\right)}}{2\left(-9\right)}
Square 30001.
x=\frac{-30001±\sqrt{900060001+36\left(-25000000\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-30001±\sqrt{900060001-900000000}}{2\left(-9\right)}
Multiply 36 times -25000000.
x=\frac{-30001±\sqrt{60001}}{2\left(-9\right)}
Add 900060001 to -900000000.
x=\frac{-30001±\sqrt{60001}}{-18}
Multiply 2 times -9.
x=\frac{\sqrt{60001}-30001}{-18}
Now solve the equation x=\frac{-30001±\sqrt{60001}}{-18} when ± is plus. Add -30001 to \sqrt{60001}.
x=\frac{30001-\sqrt{60001}}{18}
Divide -30001+\sqrt{60001} by -18.
x=\frac{-\sqrt{60001}-30001}{-18}
Now solve the equation x=\frac{-30001±\sqrt{60001}}{-18} when ± is minus. Subtract \sqrt{60001} from -30001.
x=\frac{\sqrt{60001}+30001}{18}
Divide -30001-\sqrt{60001} by -18.
x=\frac{30001-\sqrt{60001}}{18} x=\frac{\sqrt{60001}+30001}{18}
The equation is now solved.
\sqrt{\frac{30001-\sqrt{60001}}{18}}+3\times \frac{30001-\sqrt{60001}}{18}=5000
Substitute \frac{30001-\sqrt{60001}}{18} for x in the equation \sqrt{x}+3x=5000.
5000=5000
Simplify. The value x=\frac{30001-\sqrt{60001}}{18} satisfies the equation.
\sqrt{\frac{\sqrt{60001}+30001}{18}}+3\times \frac{\sqrt{60001}+30001}{18}=5000
Substitute \frac{\sqrt{60001}+30001}{18} for x in the equation \sqrt{x}+3x=5000.
\frac{15001}{3}+\frac{1}{3}\times 60001^{\frac{1}{2}}=5000
Simplify. The value x=\frac{\sqrt{60001}+30001}{18} does not satisfy the equation.
x=\frac{30001-\sqrt{60001}}{18}
Equation \sqrt{x}=5000-3x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}