Solve for x (complex solution)
x=\frac{-\sqrt{23}i-11}{18}\approx -0.611111111-0.266435085i
Graph
Share
Copied to clipboard
\sqrt{x}=3-\left(3x+5\right)
Subtract 3x+5 from both sides of the equation.
\sqrt{x}=3-3x-5
To find the opposite of 3x+5, find the opposite of each term.
\sqrt{x}=-2-3x
Subtract 5 from 3 to get -2.
\left(\sqrt{x}\right)^{2}=\left(-2-3x\right)^{2}
Square both sides of the equation.
x=\left(-2-3x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=4+12x+9x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2-3x\right)^{2}.
x-4=12x+9x^{2}
Subtract 4 from both sides.
x-4-12x=9x^{2}
Subtract 12x from both sides.
-11x-4=9x^{2}
Combine x and -12x to get -11x.
-11x-4-9x^{2}=0
Subtract 9x^{2} from both sides.
-9x^{2}-11x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-9\right)\left(-4\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, -11 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-9\right)\left(-4\right)}}{2\left(-9\right)}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121+36\left(-4\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-\left(-11\right)±\sqrt{121-144}}{2\left(-9\right)}
Multiply 36 times -4.
x=\frac{-\left(-11\right)±\sqrt{-23}}{2\left(-9\right)}
Add 121 to -144.
x=\frac{-\left(-11\right)±\sqrt{23}i}{2\left(-9\right)}
Take the square root of -23.
x=\frac{11±\sqrt{23}i}{2\left(-9\right)}
The opposite of -11 is 11.
x=\frac{11±\sqrt{23}i}{-18}
Multiply 2 times -9.
x=\frac{11+\sqrt{23}i}{-18}
Now solve the equation x=\frac{11±\sqrt{23}i}{-18} when ± is plus. Add 11 to i\sqrt{23}.
x=\frac{-\sqrt{23}i-11}{18}
Divide 11+i\sqrt{23} by -18.
x=\frac{-\sqrt{23}i+11}{-18}
Now solve the equation x=\frac{11±\sqrt{23}i}{-18} when ± is minus. Subtract i\sqrt{23} from 11.
x=\frac{-11+\sqrt{23}i}{18}
Divide 11-i\sqrt{23} by -18.
x=\frac{-\sqrt{23}i-11}{18} x=\frac{-11+\sqrt{23}i}{18}
The equation is now solved.
\sqrt{\frac{-\sqrt{23}i-11}{18}}+3\times \frac{-\sqrt{23}i-11}{18}+5=3
Substitute \frac{-\sqrt{23}i-11}{18} for x in the equation \sqrt{x}+3x+5=3.
3=3
Simplify. The value x=\frac{-\sqrt{23}i-11}{18} satisfies the equation.
\sqrt{\frac{-11+\sqrt{23}i}{18}}+3\times \frac{-11+\sqrt{23}i}{18}+5=3
Substitute \frac{-11+\sqrt{23}i}{18} for x in the equation \sqrt{x}+3x+5=3.
\frac{10}{3}+\frac{1}{3}i\times 23^{\frac{1}{2}}=3
Simplify. The value x=\frac{-11+\sqrt{23}i}{18} does not satisfy the equation.
x=\frac{-\sqrt{23}i-11}{18}
Equation \sqrt{x}=-3x-2 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}