Skip to main content
Solve for q
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{q-2}+3\right)^{2}=\left(\sqrt{4q+1}\right)^{2}
Square both sides of the equation.
\left(\sqrt{q-2}\right)^{2}+6\sqrt{q-2}+9=\left(\sqrt{4q+1}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{q-2}+3\right)^{2}.
q-2+6\sqrt{q-2}+9=\left(\sqrt{4q+1}\right)^{2}
Calculate \sqrt{q-2} to the power of 2 and get q-2.
q+7+6\sqrt{q-2}=\left(\sqrt{4q+1}\right)^{2}
Add -2 and 9 to get 7.
q+7+6\sqrt{q-2}=4q+1
Calculate \sqrt{4q+1} to the power of 2 and get 4q+1.
6\sqrt{q-2}=4q+1-\left(q+7\right)
Subtract q+7 from both sides of the equation.
6\sqrt{q-2}=4q+1-q-7
To find the opposite of q+7, find the opposite of each term.
6\sqrt{q-2}=3q+1-7
Combine 4q and -q to get 3q.
6\sqrt{q-2}=3q-6
Subtract 7 from 1 to get -6.
\left(6\sqrt{q-2}\right)^{2}=\left(3q-6\right)^{2}
Square both sides of the equation.
6^{2}\left(\sqrt{q-2}\right)^{2}=\left(3q-6\right)^{2}
Expand \left(6\sqrt{q-2}\right)^{2}.
36\left(\sqrt{q-2}\right)^{2}=\left(3q-6\right)^{2}
Calculate 6 to the power of 2 and get 36.
36\left(q-2\right)=\left(3q-6\right)^{2}
Calculate \sqrt{q-2} to the power of 2 and get q-2.
36q-72=\left(3q-6\right)^{2}
Use the distributive property to multiply 36 by q-2.
36q-72=9q^{2}-36q+36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3q-6\right)^{2}.
36q-72-9q^{2}=-36q+36
Subtract 9q^{2} from both sides.
36q-72-9q^{2}+36q=36
Add 36q to both sides.
72q-72-9q^{2}=36
Combine 36q and 36q to get 72q.
72q-72-9q^{2}-36=0
Subtract 36 from both sides.
72q-108-9q^{2}=0
Subtract 36 from -72 to get -108.
8q-12-q^{2}=0
Divide both sides by 9.
-q^{2}+8q-12=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=8 ab=-\left(-12\right)=12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -q^{2}+aq+bq-12. To find a and b, set up a system to be solved.
1,12 2,6 3,4
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 12.
1+12=13 2+6=8 3+4=7
Calculate the sum for each pair.
a=6 b=2
The solution is the pair that gives sum 8.
\left(-q^{2}+6q\right)+\left(2q-12\right)
Rewrite -q^{2}+8q-12 as \left(-q^{2}+6q\right)+\left(2q-12\right).
-q\left(q-6\right)+2\left(q-6\right)
Factor out -q in the first and 2 in the second group.
\left(q-6\right)\left(-q+2\right)
Factor out common term q-6 by using distributive property.
q=6 q=2
To find equation solutions, solve q-6=0 and -q+2=0.
\sqrt{6-2}+3=\sqrt{4\times 6+1}
Substitute 6 for q in the equation \sqrt{q-2}+3=\sqrt{4q+1}.
5=5
Simplify. The value q=6 satisfies the equation.
\sqrt{2-2}+3=\sqrt{4\times 2+1}
Substitute 2 for q in the equation \sqrt{q-2}+3=\sqrt{4q+1}.
3=3
Simplify. The value q=2 satisfies the equation.
q=6 q=2
List all solutions of \sqrt{q-2}+3=\sqrt{4q+1}.