Solve for y
y = \frac{6 {(\sqrt{214} + 17)}}{25} \approx 7.590897321
Graph
Share
Copied to clipboard
\left(\sqrt{9y+1}\right)^{2}=\left(3+\sqrt{4y-2}\right)^{2}
Square both sides of the equation.
9y+1=\left(3+\sqrt{4y-2}\right)^{2}
Calculate \sqrt{9y+1} to the power of 2 and get 9y+1.
9y+1=9+6\sqrt{4y-2}+\left(\sqrt{4y-2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+\sqrt{4y-2}\right)^{2}.
9y+1=9+6\sqrt{4y-2}+4y-2
Calculate \sqrt{4y-2} to the power of 2 and get 4y-2.
9y+1=7+6\sqrt{4y-2}+4y
Subtract 2 from 9 to get 7.
9y+1-\left(7+4y\right)=6\sqrt{4y-2}
Subtract 7+4y from both sides of the equation.
9y+1-7-4y=6\sqrt{4y-2}
To find the opposite of 7+4y, find the opposite of each term.
9y-6-4y=6\sqrt{4y-2}
Subtract 7 from 1 to get -6.
5y-6=6\sqrt{4y-2}
Combine 9y and -4y to get 5y.
\left(5y-6\right)^{2}=\left(6\sqrt{4y-2}\right)^{2}
Square both sides of the equation.
25y^{2}-60y+36=\left(6\sqrt{4y-2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5y-6\right)^{2}.
25y^{2}-60y+36=6^{2}\left(\sqrt{4y-2}\right)^{2}
Expand \left(6\sqrt{4y-2}\right)^{2}.
25y^{2}-60y+36=36\left(\sqrt{4y-2}\right)^{2}
Calculate 6 to the power of 2 and get 36.
25y^{2}-60y+36=36\left(4y-2\right)
Calculate \sqrt{4y-2} to the power of 2 and get 4y-2.
25y^{2}-60y+36=144y-72
Use the distributive property to multiply 36 by 4y-2.
25y^{2}-60y+36-144y=-72
Subtract 144y from both sides.
25y^{2}-204y+36=-72
Combine -60y and -144y to get -204y.
25y^{2}-204y+36+72=0
Add 72 to both sides.
25y^{2}-204y+108=0
Add 36 and 72 to get 108.
y=\frac{-\left(-204\right)±\sqrt{\left(-204\right)^{2}-4\times 25\times 108}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, -204 for b, and 108 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-204\right)±\sqrt{41616-4\times 25\times 108}}{2\times 25}
Square -204.
y=\frac{-\left(-204\right)±\sqrt{41616-100\times 108}}{2\times 25}
Multiply -4 times 25.
y=\frac{-\left(-204\right)±\sqrt{41616-10800}}{2\times 25}
Multiply -100 times 108.
y=\frac{-\left(-204\right)±\sqrt{30816}}{2\times 25}
Add 41616 to -10800.
y=\frac{-\left(-204\right)±12\sqrt{214}}{2\times 25}
Take the square root of 30816.
y=\frac{204±12\sqrt{214}}{2\times 25}
The opposite of -204 is 204.
y=\frac{204±12\sqrt{214}}{50}
Multiply 2 times 25.
y=\frac{12\sqrt{214}+204}{50}
Now solve the equation y=\frac{204±12\sqrt{214}}{50} when ± is plus. Add 204 to 12\sqrt{214}.
y=\frac{6\sqrt{214}+102}{25}
Divide 204+12\sqrt{214} by 50.
y=\frac{204-12\sqrt{214}}{50}
Now solve the equation y=\frac{204±12\sqrt{214}}{50} when ± is minus. Subtract 12\sqrt{214} from 204.
y=\frac{102-6\sqrt{214}}{25}
Divide 204-12\sqrt{214} by 50.
y=\frac{6\sqrt{214}+102}{25} y=\frac{102-6\sqrt{214}}{25}
The equation is now solved.
\sqrt{9\times \frac{6\sqrt{214}+102}{25}+1}=3+\sqrt{4\times \frac{6\sqrt{214}+102}{25}-2}
Substitute \frac{6\sqrt{214}+102}{25} for y in the equation \sqrt{9y+1}=3+\sqrt{4y-2}.
\frac{27}{5}+\frac{1}{5}\times 214^{\frac{1}{2}}=\frac{27}{5}+\frac{1}{5}\times 214^{\frac{1}{2}}
Simplify. The value y=\frac{6\sqrt{214}+102}{25} satisfies the equation.
\sqrt{9\times \frac{102-6\sqrt{214}}{25}+1}=3+\sqrt{4\times \frac{102-6\sqrt{214}}{25}-2}
Substitute \frac{102-6\sqrt{214}}{25} for y in the equation \sqrt{9y+1}=3+\sqrt{4y-2}.
\frac{27}{5}-\frac{1}{5}\times 214^{\frac{1}{2}}=\frac{3}{5}+\frac{1}{5}\times 214^{\frac{1}{2}}
Simplify. The value y=\frac{102-6\sqrt{214}}{25} does not satisfy the equation.
\sqrt{9\times \frac{6\sqrt{214}+102}{25}+1}=3+\sqrt{4\times \frac{6\sqrt{214}+102}{25}-2}
Substitute \frac{6\sqrt{214}+102}{25} for y in the equation \sqrt{9y+1}=3+\sqrt{4y-2}.
\frac{27}{5}+\frac{1}{5}\times 214^{\frac{1}{2}}=\frac{27}{5}+\frac{1}{5}\times 214^{\frac{1}{2}}
Simplify. The value y=\frac{6\sqrt{214}+102}{25} satisfies the equation.
y=\frac{6\sqrt{214}+102}{25}
Equation \sqrt{9y+1}=\sqrt{4y-2}+3 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}