Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{9x+7}=-\left(-\sqrt{x}-\sqrt{16x-7}\right)
Subtract -\sqrt{x}-\sqrt{16x-7} from both sides of the equation.
\sqrt{9x+7}=-\left(-\sqrt{x}\right)-\left(-\sqrt{16x-7}\right)
To find the opposite of -\sqrt{x}-\sqrt{16x-7}, find the opposite of each term.
\sqrt{9x+7}=\sqrt{x}-\left(-\sqrt{16x-7}\right)
The opposite of -\sqrt{x} is \sqrt{x}.
\sqrt{9x+7}=\sqrt{x}+\sqrt{16x-7}
The opposite of -\sqrt{16x-7} is \sqrt{16x-7}.
\left(\sqrt{9x+7}\right)^{2}=\left(\sqrt{x}+\sqrt{16x-7}\right)^{2}
Square both sides of the equation.
9x+7=\left(\sqrt{x}+\sqrt{16x-7}\right)^{2}
Calculate \sqrt{9x+7} to the power of 2 and get 9x+7.
9x+7=\left(\sqrt{x}\right)^{2}+2\sqrt{x}\sqrt{16x-7}+\left(\sqrt{16x-7}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{x}+\sqrt{16x-7}\right)^{2}.
9x+7=x+2\sqrt{x}\sqrt{16x-7}+\left(\sqrt{16x-7}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
9x+7=x+2\sqrt{x}\sqrt{16x-7}+16x-7
Calculate \sqrt{16x-7} to the power of 2 and get 16x-7.
9x+7=17x+2\sqrt{x}\sqrt{16x-7}-7
Combine x and 16x to get 17x.
9x+7-\left(17x-7\right)=2\sqrt{x}\sqrt{16x-7}
Subtract 17x-7 from both sides of the equation.
9x+7-17x+7=2\sqrt{x}\sqrt{16x-7}
To find the opposite of 17x-7, find the opposite of each term.
-8x+7+7=2\sqrt{x}\sqrt{16x-7}
Combine 9x and -17x to get -8x.
-8x+14=2\sqrt{x}\sqrt{16x-7}
Add 7 and 7 to get 14.
\left(-8x+14\right)^{2}=\left(2\sqrt{x}\sqrt{16x-7}\right)^{2}
Square both sides of the equation.
64x^{2}-224x+196=\left(2\sqrt{x}\sqrt{16x-7}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-8x+14\right)^{2}.
64x^{2}-224x+196=2^{2}\left(\sqrt{x}\right)^{2}\left(\sqrt{16x-7}\right)^{2}
Expand \left(2\sqrt{x}\sqrt{16x-7}\right)^{2}.
64x^{2}-224x+196=4\left(\sqrt{x}\right)^{2}\left(\sqrt{16x-7}\right)^{2}
Calculate 2 to the power of 2 and get 4.
64x^{2}-224x+196=4x\left(\sqrt{16x-7}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
64x^{2}-224x+196=4x\left(16x-7\right)
Calculate \sqrt{16x-7} to the power of 2 and get 16x-7.
64x^{2}-224x+196=64x^{2}-28x
Use the distributive property to multiply 4x by 16x-7.
64x^{2}-224x+196-64x^{2}=-28x
Subtract 64x^{2} from both sides.
-224x+196=-28x
Combine 64x^{2} and -64x^{2} to get 0.
-224x+196+28x=0
Add 28x to both sides.
-196x+196=0
Combine -224x and 28x to get -196x.
-196x=-196
Subtract 196 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-196}{-196}
Divide both sides by -196.
x=1
Divide -196 by -196 to get 1.
\sqrt{9\times 1+7}-\sqrt{1}-\sqrt{16\times 1-7}=0
Substitute 1 for x in the equation \sqrt{9x+7}-\sqrt{x}-\sqrt{16x-7}=0.
0=0
Simplify. The value x=1 satisfies the equation.
x=1
Equation \sqrt{9x+7}=\sqrt{16x-7}+\sqrt{x} has a unique solution.