Solve for x
x=3
Graph
Share
Copied to clipboard
7\sqrt{2}-\sqrt{32}=x\sqrt{2}
Factor 98=7^{2}\times 2. Rewrite the square root of the product \sqrt{7^{2}\times 2} as the product of square roots \sqrt{7^{2}}\sqrt{2}. Take the square root of 7^{2}.
7\sqrt{2}-4\sqrt{2}=x\sqrt{2}
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
3\sqrt{2}=x\sqrt{2}
Combine 7\sqrt{2} and -4\sqrt{2} to get 3\sqrt{2}.
x\sqrt{2}=3\sqrt{2}
Swap sides so that all variable terms are on the left hand side.
\sqrt{2}x=3\sqrt{2}
The equation is in standard form.
\frac{\sqrt{2}x}{\sqrt{2}}=\frac{3\sqrt{2}}{\sqrt{2}}
Divide both sides by \sqrt{2}.
x=\frac{3\sqrt{2}}{\sqrt{2}}
Dividing by \sqrt{2} undoes the multiplication by \sqrt{2}.
x=3
Divide 3\sqrt{2} by \sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}