Solve for x
x=12
Graph
Share
Copied to clipboard
\left(\sqrt{8x+48}\right)^{2}=x^{2}
Square both sides of the equation.
8x+48=x^{2}
Calculate \sqrt{8x+48} to the power of 2 and get 8x+48.
8x+48-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}+8x+48=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=8 ab=-48=-48
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx+48. To find a and b, set up a system to be solved.
-1,48 -2,24 -3,16 -4,12 -6,8
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -48.
-1+48=47 -2+24=22 -3+16=13 -4+12=8 -6+8=2
Calculate the sum for each pair.
a=12 b=-4
The solution is the pair that gives sum 8.
\left(-x^{2}+12x\right)+\left(-4x+48\right)
Rewrite -x^{2}+8x+48 as \left(-x^{2}+12x\right)+\left(-4x+48\right).
-x\left(x-12\right)-4\left(x-12\right)
Factor out -x in the first and -4 in the second group.
\left(x-12\right)\left(-x-4\right)
Factor out common term x-12 by using distributive property.
x=12 x=-4
To find equation solutions, solve x-12=0 and -x-4=0.
\sqrt{8\times 12+48}=12
Substitute 12 for x in the equation \sqrt{8x+48}=x.
12=12
Simplify. The value x=12 satisfies the equation.
\sqrt{8\left(-4\right)+48}=-4
Substitute -4 for x in the equation \sqrt{8x+48}=x.
4=-4
Simplify. The value x=-4 does not satisfy the equation because the left and the right hand side have opposite signs.
x=12
Equation \sqrt{8x+48}=x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}