Evaluate
2\sqrt{5}+9\approx 13.472135955
Quiz
Arithmetic
5 problems similar to:
\sqrt{ 80 } - \sqrt{ 20 } +(4+ \sqrt{ 7 } ) \times (4- \sqrt{ 7 } )
Share
Copied to clipboard
4\sqrt{5}-\sqrt{20}+\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)
Factor 80=4^{2}\times 5. Rewrite the square root of the product \sqrt{4^{2}\times 5} as the product of square roots \sqrt{4^{2}}\sqrt{5}. Take the square root of 4^{2}.
4\sqrt{5}-2\sqrt{5}+\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
2\sqrt{5}+\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)
Combine 4\sqrt{5} and -2\sqrt{5} to get 2\sqrt{5}.
2\sqrt{5}+4^{2}-\left(\sqrt{7}\right)^{2}
Consider \left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2\sqrt{5}+16-\left(\sqrt{7}\right)^{2}
Calculate 4 to the power of 2 and get 16.
2\sqrt{5}+16-7
The square of \sqrt{7} is 7.
2\sqrt{5}+9
Subtract 7 from 16 to get 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}