Evaluate
\frac{\sqrt{5}\left(\sqrt{10}+4\right)}{2}\approx 8.007669861
Factor
\frac{\sqrt{5} {(\sqrt{2} \sqrt{5} + 4)}}{2} = 8.007669860932317
Share
Copied to clipboard
4\sqrt{5}+5\sqrt{\frac{1}{2}}-3\sqrt{5}+\frac{1}{5}\sqrt{125}
Factor 80=4^{2}\times 5. Rewrite the square root of the product \sqrt{4^{2}\times 5} as the product of square roots \sqrt{4^{2}}\sqrt{5}. Take the square root of 4^{2}.
4\sqrt{5}+5\times \frac{\sqrt{1}}{\sqrt{2}}-3\sqrt{5}+\frac{1}{5}\sqrt{125}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
4\sqrt{5}+5\times \frac{1}{\sqrt{2}}-3\sqrt{5}+\frac{1}{5}\sqrt{125}
Calculate the square root of 1 and get 1.
4\sqrt{5}+5\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-3\sqrt{5}+\frac{1}{5}\sqrt{125}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
4\sqrt{5}+5\times \frac{\sqrt{2}}{2}-3\sqrt{5}+\frac{1}{5}\sqrt{125}
The square of \sqrt{2} is 2.
4\sqrt{5}+\frac{5\sqrt{2}}{2}-3\sqrt{5}+\frac{1}{5}\sqrt{125}
Express 5\times \frac{\sqrt{2}}{2} as a single fraction.
\sqrt{5}+\frac{5\sqrt{2}}{2}+\frac{1}{5}\sqrt{125}
Combine 4\sqrt{5} and -3\sqrt{5} to get \sqrt{5}.
\sqrt{5}+\frac{5\sqrt{2}}{2}+\frac{1}{5}\times 5\sqrt{5}
Factor 125=5^{2}\times 5. Rewrite the square root of the product \sqrt{5^{2}\times 5} as the product of square roots \sqrt{5^{2}}\sqrt{5}. Take the square root of 5^{2}.
\sqrt{5}+\frac{5\sqrt{2}}{2}+\sqrt{5}
Cancel out 5 and 5.
2\sqrt{5}+\frac{5\sqrt{2}}{2}
Combine \sqrt{5} and \sqrt{5} to get 2\sqrt{5}.
\frac{2\times 2\sqrt{5}}{2}+\frac{5\sqrt{2}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2\sqrt{5} times \frac{2}{2}.
\frac{2\times 2\sqrt{5}+5\sqrt{2}}{2}
Since \frac{2\times 2\sqrt{5}}{2} and \frac{5\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
\frac{4\sqrt{5}+5\sqrt{2}}{2}
Do the multiplications in 2\times 2\sqrt{5}+5\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}