Evaluate
\frac{5\sqrt{2}}{2}+4\sqrt{5}-15\approx -2.520194184
Share
Copied to clipboard
4\sqrt{5}+5\sqrt{\frac{1}{2}}-3\sqrt{\frac{1}{5}}\sqrt{125}
Factor 80=4^{2}\times 5. Rewrite the square root of the product \sqrt{4^{2}\times 5} as the product of square roots \sqrt{4^{2}}\sqrt{5}. Take the square root of 4^{2}.
4\sqrt{5}+5\times \frac{\sqrt{1}}{\sqrt{2}}-3\sqrt{\frac{1}{5}}\sqrt{125}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
4\sqrt{5}+5\times \frac{1}{\sqrt{2}}-3\sqrt{\frac{1}{5}}\sqrt{125}
Calculate the square root of 1 and get 1.
4\sqrt{5}+5\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-3\sqrt{\frac{1}{5}}\sqrt{125}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
4\sqrt{5}+5\times \frac{\sqrt{2}}{2}-3\sqrt{\frac{1}{5}}\sqrt{125}
The square of \sqrt{2} is 2.
4\sqrt{5}+\frac{5\sqrt{2}}{2}-3\sqrt{\frac{1}{5}}\sqrt{125}
Express 5\times \frac{\sqrt{2}}{2} as a single fraction.
\frac{2\times 4\sqrt{5}}{2}+\frac{5\sqrt{2}}{2}-3\sqrt{\frac{1}{5}}\sqrt{125}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4\sqrt{5} times \frac{2}{2}.
\frac{2\times 4\sqrt{5}+5\sqrt{2}}{2}-3\sqrt{\frac{1}{5}}\sqrt{125}
Since \frac{2\times 4\sqrt{5}}{2} and \frac{5\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
\frac{8\sqrt{5}+5\sqrt{2}}{2}-3\sqrt{\frac{1}{5}}\sqrt{125}
Do the multiplications in 2\times 4\sqrt{5}+5\sqrt{2}.
\frac{8\sqrt{5}+5\sqrt{2}}{2}-3\times \frac{\sqrt{1}}{\sqrt{5}}\sqrt{125}
Rewrite the square root of the division \sqrt{\frac{1}{5}} as the division of square roots \frac{\sqrt{1}}{\sqrt{5}}.
\frac{8\sqrt{5}+5\sqrt{2}}{2}-3\times \frac{1}{\sqrt{5}}\sqrt{125}
Calculate the square root of 1 and get 1.
\frac{8\sqrt{5}+5\sqrt{2}}{2}-3\times \frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\sqrt{125}
Rationalize the denominator of \frac{1}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{8\sqrt{5}+5\sqrt{2}}{2}-3\times \frac{\sqrt{5}}{5}\sqrt{125}
The square of \sqrt{5} is 5.
\frac{8\sqrt{5}+5\sqrt{2}}{2}-3\times \frac{\sqrt{5}}{5}\times 5\sqrt{5}
Factor 125=5^{2}\times 5. Rewrite the square root of the product \sqrt{5^{2}\times 5} as the product of square roots \sqrt{5^{2}}\sqrt{5}. Take the square root of 5^{2}.
\frac{8\sqrt{5}+5\sqrt{2}}{2}-15\times \frac{\sqrt{5}}{5}\sqrt{5}
Multiply 3 and 5 to get 15.
\frac{8\sqrt{5}+5\sqrt{2}}{2}-3\sqrt{5}\sqrt{5}
Cancel out 5, the greatest common factor in 15 and 5.
\frac{8\sqrt{5}+5\sqrt{2}}{2}-\frac{2\times 3\sqrt{5}\sqrt{5}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3\sqrt{5}\sqrt{5} times \frac{2}{2}.
\frac{8\sqrt{5}+5\sqrt{2}-2\times 3\sqrt{5}\sqrt{5}}{2}
Since \frac{8\sqrt{5}+5\sqrt{2}}{2} and \frac{2\times 3\sqrt{5}\sqrt{5}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{8\sqrt{5}+5\sqrt{2}-30}{2}
Do the multiplications in 8\sqrt{5}+5\sqrt{2}-2\times 3\sqrt{5}\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}