Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\sqrt{2}+\sqrt{32}\sqrt{2}-6\sqrt{\frac{1}{2}}+\sqrt[3]{27}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
2\sqrt{2}+\sqrt{2}\sqrt{16}\sqrt{2}-6\sqrt{\frac{1}{2}}+\sqrt[3]{27}
Factor 32=2\times 16. Rewrite the square root of the product \sqrt{2\times 16} as the product of square roots \sqrt{2}\sqrt{16}.
2\sqrt{2}+2\sqrt{16}-6\sqrt{\frac{1}{2}}+\sqrt[3]{27}
Multiply \sqrt{2} and \sqrt{2} to get 2.
2\sqrt{2}+2\times 4-6\sqrt{\frac{1}{2}}+\sqrt[3]{27}
Calculate the square root of 16 and get 4.
2\sqrt{2}+8-6\sqrt{\frac{1}{2}}+\sqrt[3]{27}
Multiply 2 and 4 to get 8.
2\sqrt{2}+8-6\times \frac{\sqrt{1}}{\sqrt{2}}+\sqrt[3]{27}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
2\sqrt{2}+8-6\times \frac{1}{\sqrt{2}}+\sqrt[3]{27}
Calculate the square root of 1 and get 1.
2\sqrt{2}+8-6\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\sqrt[3]{27}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
2\sqrt{2}+8-6\times \frac{\sqrt{2}}{2}+\sqrt[3]{27}
The square of \sqrt{2} is 2.
2\sqrt{2}+8-3\sqrt{2}+\sqrt[3]{27}
Cancel out 2, the greatest common factor in 6 and 2.
-\sqrt{2}+8+\sqrt[3]{27}
Combine 2\sqrt{2} and -3\sqrt{2} to get -\sqrt{2}.
-\sqrt{2}+8+3
Calculate \sqrt[3]{27} and get 3.
-\sqrt{2}+11
Add 8 and 3 to get 11.