Evaluate
\frac{\sqrt{3}\left(\sqrt{6}+1\right)}{3}\approx 1.991563832
Quiz
Arithmetic
5 problems similar to:
\sqrt{ 8 } + \sqrt{ \frac{ 1 }{ 3 } } -2 \sqrt{ \frac{ 1 }{ 2 } }
Share
Copied to clipboard
2\sqrt{2}+\sqrt{\frac{1}{3}}-2\sqrt{\frac{1}{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
2\sqrt{2}+\frac{\sqrt{1}}{\sqrt{3}}-2\sqrt{\frac{1}{2}}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
2\sqrt{2}+\frac{1}{\sqrt{3}}-2\sqrt{\frac{1}{2}}
Calculate the square root of 1 and get 1.
2\sqrt{2}+\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-2\sqrt{\frac{1}{2}}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
2\sqrt{2}+\frac{\sqrt{3}}{3}-2\sqrt{\frac{1}{2}}
The square of \sqrt{3} is 3.
2\sqrt{2}+\frac{\sqrt{3}}{3}-2\times \frac{\sqrt{1}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{1}{2}} as the division of square roots \frac{\sqrt{1}}{\sqrt{2}}.
2\sqrt{2}+\frac{\sqrt{3}}{3}-2\times \frac{1}{\sqrt{2}}
Calculate the square root of 1 and get 1.
2\sqrt{2}+\frac{\sqrt{3}}{3}-2\times \frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
2\sqrt{2}+\frac{\sqrt{3}}{3}-2\times \frac{\sqrt{2}}{2}
The square of \sqrt{2} is 2.
2\sqrt{2}+\frac{\sqrt{3}}{3}-\sqrt{2}
Cancel out 2 and 2.
\sqrt{2}+\frac{\sqrt{3}}{3}
Combine 2\sqrt{2} and -\sqrt{2} to get \sqrt{2}.
\frac{3\sqrt{2}}{3}+\frac{\sqrt{3}}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{2} times \frac{3}{3}.
\frac{3\sqrt{2}+\sqrt{3}}{3}
Since \frac{3\sqrt{2}}{3} and \frac{\sqrt{3}}{3} have the same denominator, add them by adding their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}